MM92, Standard, 93129 / T01 Napier Wind Project Results of acoustic noise measurements according to IEC 61400-11 Edition 3.0

Senvion Canada Inc.

Report No.: 10029304-R-1-A **Date:** 2019-03-08

IMPORTANT NOTICE AND DISCLAIMER

- 1. This document is intended for the sole use of the Client as detailed on the front page of this document to whom the document is addressed and who has entered into a written agreement with the DNV GL entity issuing this document ("DNV GL"). To the extent permitted by law, neither DNV GL nor any group company (the "Group") assumes any responsibility whether in contract, tort including without limitation negligence, or otherwise howsoever, to third parties (being persons other than the Client), and no company in the Group other than DNV GL shall be liable for any loss or damage whatsoever suffered by virtue of any act, omission or default (whether arising by negligence or otherwise) by DNV GL, the Group or any of its or their servants, subcontractors or agents. This document must be read in its entirety and is subject to any assumptions and qualifications expressed therein as well as in any other relevant communications in connection with it. This document may contain detailed technical data which is intended for use only by persons possessing requisite expertise in its subject matter.
- This document is protected by copyright and may only be reproduced and circulated in accordance with the Document Classification and associated conditions stipulated or referred to in this document and/or in DNV GL's written agreement with the Client. No part of this document may be disclosed in any public offering memorandum, prospectus or stock exchange listing, circular or announcement without the express and prior written consent of DNV GL. A Document Classification permitting the Client to redistribute this document shall not thereby imply that DNV GL has any liability to any recipient other than the Client.
- 3. This document has been produced from information relating to dates and periods referred to in this document. This document does not imply that any information is not subject to change. Except and to the extent that checking or verification of information or data is expressly agreed within the written scope of its services, DNV GL shall not be responsible in any way in connection with erroneous information or data provided to it by the Client or any third party, or for the effects of any such erroneous information or data whether or not contained or referred to in this document.
- 4. Any wind or energy forecasts estimates or predictions are subject to factors not all of which are within the scope of the probability and uncertainties contained or referred to in this document and nothing in this document guarantees any particular wind speed or energy output.

KEY TO DOCUMENT CLASSIFICATION

For disclosure only to named individuals within the Client's Strictly Confidential

organisation.

For disclosure only to individuals directly concerned with the

subject matter of the document within the Client's

organisation.

Not to be disclosed outside the Client's organisation. Commercial in Confidence

Not to be disclosed to non-DNV GL staff DNV GL only

> Distribution for information only at the discretion of the Client (subject to the above Important Notice and Disclaimer and

Client's Discretion the terms of DNV GL's written agreement with the Client).

Available for information only to the general public (subject to Published

the above Important Notice and Disclaimer).

© 2019 DNV GL, All rights reserved

Private and Confidential

Report title: Results of acoutous IEC 61400-3 Customer: Senvion Canac		da Inc., ené-Lévesque Ouest, Bureau 3610,			DNV GL - Energy Renewables Measurements GL Garrad Hassan Deutschland GmbH Sommerdeich 14b 25709 Kaiser-Wilhelm-Koog Germany		
Contact person:	Hans Luedke			Tel:	+49 4856 901 0		
Date of order:	2018-10-16			HR E	3 636 ME		
Project No.:	10029304						
Report No.:	10029304-R-	1-A					
Task and objective	:						
Noise emission mea	asurement acco	ording to IEC 61400-	11 Edition 3.0 d	on a wind tu	ırbine of type		
Senvion MM92 nea	r Napier (Ontar	io) in Canada.					
Prepared by:		Verified by:		Approved	by:		
Annika Johannsen B.Eng		DiplIng. (FH) Ulf Kock		DiplIng. (F	H) I lif Kock		
(Project engineer)		(Senior Project enginee			ect engineer)		
☐ Strictly Confiden	tial						
□ Private and Conf							
☐ Commercial in Commercial							
☐ DNV GL only							
⊠ Client's Discretio	n						
□ Published							
Reference to part of this	report which may l	ead to misinterpretation is	s not permissible.				
Rev. No. Date	Reason for Issue	Pr	repared by	Verified by	Approved by		
A 2019-03-08	First issue	A	nnika Johannsen	Ulf Kock	Ulf Kock		

This report in excerpts may only be copied with written consent of GL Garrad Hassan Deutschland GmbH. It totally consists 88 pages incl. all annexes.

Table of contents

1	INTRODUCTION	1
2	WIND TURBINE INFORMATION	1
2.1	Wind Turbine Equipment Details	1
2.2	Wind Turbine Location	2
	Willia Parisine Essacion	_
3	METHODS	2
a.	Measurement procedure	2
b.	Course of measurements	2
С.	Measuring equipment	4
d.	Position of microphone	4
e.	Position of met mast	4
4	MEASUREMENT RESULTS	5
a.	Determination of noise directivity	5
b.	Sound pressure level	5
c.	Sound power level	6
4.1	Tonal and frequency analysis	7
4.2	One-third octave analysis	7
4.3	Type B uncertainties	8
5	DEVIATIONS	8
6	RESULTS	9
7	CONCLUSION	10
8	REFERENCES	11
9	LIST OF ABBREVIATIONS	12
10	APPENDIX	13
10.1	L _{Aeq} vs. wind speed at 10 m height	14
10.2	L _{Aeq} vs. wind speed at hub height	15
10.3	Summary of analysis input and results at hub height	16
10.4	Summary of analysis input and results at 10m height	17
10.5	Measured wind speed from met mast vs. wind speed from power curve	18
10.6	Measured wind speed from nacelle anemometer vs. wind speed from power curve	19
10.7	L _{Aeq} vs. active power	20
10.8	Rotor speed vs. active power	21
10.9	Rotor speed vs. corrected wind speed	22
10.10	Time plot of measurement	23
10.11	Power Curve	24
10.12	Third-octave sound power spectra at a WS of 6.5 m/s at hub height	25
10.13	Third-octave sound power spectra at a WS of 7.0 m/s at hub height	26
10.14	Third-octave sound power spectra at a WS of 7.5 m/s at hub height	27
10.15	Third-octave sound power spectra at a WS of 8.0 m/s at hub height	28
10.16	Third-octave sound power spectra at a WS of 8.5 m/s at hub height	29

10 17	Third asterna according to a section at a MC of 0.0 mg/s, at both height	20
10.17	Third-octave sound power spectra at a WS of 9.0 m/s at hub height	30
10.18	Third-octave sound power spectra at a WS of 9.5 m/s at hub height	31
10.19	Third-octave sound power spectra at a WS of 10.0 m/s at hub height	32
10.20	Third-octave sound power spectra at a WS of 10.5 m/s at hub height	33
10.21	Third-octave sound power spectra at a WS of 11.0 m/s at hub height	34
10.22	Third-octave sound power spectra at a WS of 11.5 m/s at hub height	35
10.23	Third-octave sound power spectra at a WS of 12.0 m/s at hub height	36
10.24	Third-octave sound power spectra at a WS of 12.5 m/s at hub height	37
10.25	Third-octave sound power spectra at a WS of 13.0 m/s at hub height	38
10.26	Third-octave sound power spectra at a WS of 13.5 m/s at hub height	39
10.27	Third-octave sound power spectra at a WS of 5 m/s at 10 m height	40
10.28	Third-octave sound power spectra at a WS of 6 m/s at 10 m height	41
10.29	Third-octave sound power spectra at a WS of 7 m/s at 10 m height	42
10.30	Third-octave sound power spectra at a WS of 8 m/s at 10 m height	43
10.31	Third-octave sound power spectra at a WS of 9 m/s at 10 m height	44
10.33	Tonality analysis overview – all	45
10.34	Tonality analysis - $\Delta L_{pn,j}$ and $\Delta L_{a,k}$ vs. frequency	46
10.35	Tonality analysis - rpm vs. frequency for the identified tones in the total noise	47
10.36	Tonality analysis - wind bin overview (page 1)	48
10.37	Tonality analysis - wind bin overview (page 2)	49
10.38	Tonality analysis - wind bin overview (page 3)	50
10.39	Tonality analysis - wind bin overview (page 4)	51
10.40	Tonality analysis - wind bin overview (page 5)	52
10.41	Frequency spectra of total and background noise at a WS of 6.5 m/s at hub height	53
10.42	Frequency spectra of total and background noise at a WS of 7.0 m/s at hub height	54
10.43	Frequency spectra of total and background noise at a WS of 7.5 m/s at hub height	55
10.44	Frequency spectra of total and background noise at a WS of 8.0 m/s at hub height	56
10.45	Frequency spectra of total and background noise at a WS of 8.5 m/s at hub height	57
10.46	Frequency spectra of total and background noise at a WS of 9.0 m/s at hub height	58
10.47	Frequency spectra of total and background noise at a WS of 9.5 m/s at hub height	59
10.48	Frequency spectra of total and background noise at a WS of 10.0 m/s at hub height	60
10.49	Frequency spectra of total and background noise at a WS of 10.5 m/s at hub height	61
10.50	Frequency spectra of total and background noise at a WS of 11.0 m/s at hub height	62
10.51	Frequency spectra of total and background noise at a WS of 11.5 m/s at hub height	63
10.52	Frequency spectra of total and background noise at a WS of 12.0 m/s at hub height	64
10.53	Frequency spectra of total and background noise at a WS of 12.5 m/s at hub height	65
10.54	Frequency spectra of total and background noise at a WS of 13.0 m/s at hub height	66
10.55	Frequency spectra of total and background noise at a WS of 13.5 m/s at hub height	67
10.56	Power curve used for the analysis	68
10.57	Extract from REA 8388-9B7N4J; Schedule B	69
10.58	Manufacturer's certificate	70
10.59	Measuring equipment	71
10.60	Calibration certificate of noise level meter (page 1)	72
10.61	Calibration certificate of noise level meter (page 2)	73
10.62	Calibration certificate of noise level meter (page 3)	74
10.63	Calibration certificate of noise level meter (page 4)	75
10.64	Calibration certificate of noise level meter (page 5)	76
10.65	Calibration certificate of calibrator (page 1)	77

10.66	Calibration certificate of calibrator (page 2)	78
10.67	Calibration certificate of calibrator (page 3)	79
10.68	Calibration certificate of anemometer (page 1)	80
10.69	Calibration certificate of anemometer (page 2)	81
10.70	Calibration certificate of anemometer (page 3)	82
10.71	Calibration certificate of anemometer (page 4)	83
10.72	Calibration certificate of anemometer (page 5)	84
10.73	Extract of Calibration certificate of secondary wind screen	85
10.74	Position of the test site	86
10.75	Photos	87

1 INTRODUCTION

DNV GL was retained by Senvion GmbH ("Senvion") on behalf of wpd Napier Wind Incorporated, required under Renewable Energy Approval ("REA") #8388-9B7N4J to conduct testing per the IEC 61400-11 Edition 3.0 test standard on one of the wind turbines, designated as T01, located in the Napier Wind Project ("Napier"). The measurements were carried out in accordance with IEC 61400-11:2012, "Wind turbine generator systems – Part 11: Acoustic noise measurement techniques". This report is specific only to turbine T01.

GL Garrad Hassan Deutschland GmbH which is part of the Energy Renewable Advisory of DNV GL is accredited by the German DAKKS under ISO/IEC 17025 to perform testing according to the IEC 61400-11 test standard. This report is not done under the accreditation to suit the format requested by the costumer.

The results given in this report only relate to the specific turbine, weather conditions and measurement site. The results mentioned in this report can only be transferred to other turbines of the same model and technical construction with consideration of the uncertainty in the results, due to manufacturing tolerances and variation in meteorological and geographical conditions where the turbines might be installed.

2 WIND TURBINE INFORMATION

2.1 Wind Turbine Equipment Details

Equipment information specific to turbine T01 was provided by the manufacturer and is summarized in Tables 1 to 5.

Table 1 - Wind Turbine Details

Wind Turbine Details				
Manufacturer	Senvion			
Model Number	MM92 100M CCV*			
Turbine ID (Serial Number)	T01 (93129)			

Table 2 - Operating Details

Operating Details				
Vertical or Horizontal axis wind turbine	Horizontal			
Upwind or downwind rotor	Upwind			
Hub height	100m			
Horizontal distance from rotor centre to tower axis	3150 mm			
Diameter of rotor	92.5 m			
Tower type (lattice or tube)	Tabular			
Passive stall, active stall, or pitch controlled turbine	Pitch			
Constant or variable speed	Variable			
Power curve	See Annex Figure 10.11			
Rotational speed at each integer standardised wind speed	See Annex Figure 10.9			
Rated power output	2.050 MW			

Table 3 - Rotor Details

	Rotor Details
Presence of aerodynamic add-ons, such as vortex generators, stall strips, serrated trailing edges, etc.	
Blade type	RE 45.2
Serial number	0026 – 0028 - 0029
Number of blades	3

Table 4 - Gearbox Details

Gearbox Details				
Manufacturer	ZF Hansen			
Model number	EH854A-012L			
Serial number	LM0313			

Table 5 - Generator Details

Generator Details				
Manufacturer Siemens				
Model number	JFRA-560SR-06A			
Serial number	6014631			

Information provided by Senvion is in the Manufacturers Certificate Section 10.58.

2.2 Wind Turbine Location

Turbine T01 is located in the municipality of Napier near the town of Strathroy. It is bounded to the north by Highway 402, to the east by Seed Road, to the south by Napperton Drive 39 and to the west by Kenwood Road 6. The area surrounding T01 is flat and consists primarily of farmland. The UTM coordinates of the turbine are 440074 m E and 4756817 m N.

3 METHODS

All measurements and analysis described in this report were done in accordance to our internal service instruction [2] which is based on IEC 61400-11 Ed. 3.0 Wind Turbines, Part 11: Acoustic Noise Measurement Techniques, 2012-11-07 [1].

a. Measurement procedure

According to [1] the sound power level has to be analysed for wind speeds from 0.8 to 1.3 times the wind speed at 85 % of maximum power rounded to the bin centres.

Note: A calculated power curve for the turbine was provided by the customer for purposes of converting the measured turbine power output into the standardized wind speed. This power curve is given in the annex.

b. Course of measurements

The total measurement period lasted from 2018-10-17 06:50 h until 2018-10-17 13:00 h. During turbine operation, the measured wind speed at hub height ranged from 6.0 to 16.0 m/s. The real electrical power output of the turbine ranged between 421 and 2112 kW.

The turbine was running continuously during the operating noise measurements. The sound pressure level was measured with a microphone on an acoustically hard board and fed into a sound level meter. The calculated A-weighted equivalent 1-second average data and the non-acoustic data were acquired by the measurement system with a sampling rate of 1 Hz. Time periods with intermittent background noise of a significant nature, e.g. passing cars, planes flying over, rain etc., were marked accordingly during the measurements and are omitted in the later evaluation. If there were random and reoccurring disturbances which could not be marked during the measurement, a later state correction by means of a comparison with the audio-recording is done.

The wind turbine generator system is sited in farmland. The surface is covered by grass/plants; therefore a typical length of 0.05 m is assumed in the following. The microphone position was chosen to minimize the effect of buildings, trees or bushes in the surrounding area of the wind turbine generator system, which might have had an influence on the measurement results. The conditions comply with free field behaviour over a reflecting plane.

During the noise measurements, the meteorological conditions given in Table 6 were prevailing.

Table 6 Prevailing meteorological conditions during the measurements

Parameter	Value
Barometric pressure at 2 m height above ground [hPa]	984 - 989
Air temperature at 2 m height above ground [°C]	4.8 - 7.8
Prevailing wind direction	WSW
Range of wind direction [°]	261 - 339
Weather conditions	Cloudy and dry

c. Measuring equipment

The measuring equipment used for the measurement is listed in the annex. The equipment is tested regularly according to the management system support function [3] which includes the requirements of the [1] to ensure a high degree of measurement accuracy as well as data security. The complete acoustic measurement system was checked before and after the measurements using an acoustic calibrator.

d. Position of microphone

The microphone was placed according to [1]. The distance from the turbine to the reference measuring point, $R_0 = 144.0$ m, was chosen taking local circumstances into account. The height of the microphone with respect to the bottom of the turbine foundation was $h_A = 0.0$ m.

e. Position of met mast

To gain results of free wind at the turbine position the met mast was located at the marked area in Figure 1. The aim is to measure the wind speed and wind direction in free-wind conditions by means of an anemometer and wind vane mounted on a 10-m met mast. The wind speed measured at the met mast is used for background noise measurements.

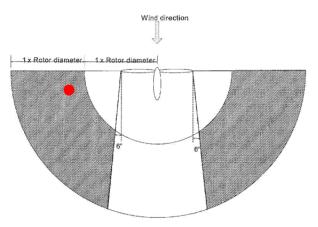


Figure 1: Position of the met mast

4 MEASUREMENT RESULTS

a. Determination of noise directivity

As no significant noise directivity was ascertained the reference noise measurement position was chosen to be directly downwind of the turbine. This position ensured that the worst-case sound propagation conditions were taken into account.

b. Sound pressure level

The microphone converts the sound pressure into a continuous analogue signal which is then fed to a sound level meter. The resulting dB value (L_{Aeq}) together with the status, the wind speed (WS) at a height of 10 m ($V_{z,m}$) and the measured power output (P_m) of the turbine, all recorded by the measurement system, is plotted against time in a graph given in the annex 10.10.

Here it can be seen at which points in time the turbine is in operation and shut down and provides an overview of the background noise in relation to the operating noise over the whole period of the measurement.

Non-normal background noises occurring in the measurement period, e.g. from aircraft or traffic, were marked during data acquisition to enable their easy omission in the evaluation to follow.

The state signal is used to differentiate between periods when the turbine is in operation and when it is stopped.

Following states have been used for evaluation in this report:

State 0: marks the data to be omitted in the evaluation,

State 1.5: depicts a stopped turbine,

State 2: depicts a turbine in operation.

Remark Nr. 1: This measurement was performed using a secondary wind shield. The attenuation effect of this wind shield was corrected by use of the measured coefficients for the secondary wind shield of type EWS-16-22 which are shown in the annex.

In order to determine the wind speed at hub height during noise measurement of the turbine the allowed range of the power curve is taken into account based of the following equation:

$$(P_{k+1} - P_{tol}) - (P_k + P_{tol}) > 0$$
(1)

where

k is the wind speed bin number of the power curve;

 P_k is the power curve value at wind speed bin k;

 P_{k+1} is the power curve value above wind speed bin k;

 P_{tol} is the tolerance on the power reading, in this case it is 1 % of maximum power.

All data points which exceed or are below these limitations are determined with nacelle anemometer and the wind speed from the power curve using the following relation:

$$V_{\text{nac,n}} = \kappa_{\text{nac}} \cdot V_{\text{nac,m}} \tag{2}$$

where

 $V_{\text{nac,n}}$ is the normalised wind speed from the nacelle anemometer, corrected to hub height;

 $V_{\text{nac,m}}$ is the wind speed measured with the nacelle anemometer.

Outside the allowed range of the power curve the normalised WS at hub height is $V_{H,n} = V_{nac,n}$.

For this measurement κ_{nac} is determined to be κ_{nac} = 1.03.

For background noise measurements the wind speed is measured at height z (in this case 10 m) and multiplied by factor K_Z factor to derive the normalized wind speed at hub height.

$$V_{\rm B,n} = \kappa_{\rm Z} \cdot V_{\rm Z,m} \tag{3}$$

where

 $V_{Z,m}$ is the wind speed measured with an anemometer at height Z of at least 10 m;

 $V_{B,n}$ is the normalised wind speed at hub height.

During background noise measurements: $V_{H,n} = V_{B,n}$.

For this measurement κ_z is determined to be κ_z = 1.55.

Besides the equivalent noise level, a 1/3-octave spectrum with centre frequencies between 20 Hz and 10 kHz is calculated from the recorded WAV files and later on is used for the evaluation of the equivalent noise level $L_{Aeq,o,j}$.

$$L_{\text{Aeq,o,j}} = 10 \cdot \log \sum_{i=1}^{28} 10^{\left(\frac{L_{\text{Aeq,i,j}}}{10}\right)}$$
 (4)

$$\Delta_{j} = L_{\text{Aeq, j}} - L_{\text{Aeq, o, j}} \tag{5}$$

The difference Δ_j between the noise level and the sum of the 1/3-octave band spectrum is added to each individual band $L_{{
m Aeq},{
m n,i,j}}$ in the 1/3-octave band spectrum for each measurement period j.

$$L_{\text{Aeq,n,i,j}} = L_{\text{Aeq,i,j}} + \Delta_j \tag{6}$$

c. Sound power level

In accordance to [1] the corrected sound pressure level for the 1/3-octave band i is the energetic difference between the total noise level and the background noise level expressed as:

$$L_{\text{V,c,i,k}} = 10 \cdot \log \left(10^{0.1 \cdot L_{\text{V,T,i,k}}} - 10^{0.1 \cdot L_{\text{V,B,i,k}}} \right)$$
 (7)

The corresponding sound power level $L_{WA,i,k}$ is calculated from the background corrected sound pressure level for the same 1/3-octave band as follows:

$$L_{\text{WA,i,k}} = L_{\text{V,c,i,k}} - 6 + 10 \cdot \lg \left(\frac{4 \cdot \pi \cdot R_1^2}{S_0} \right)$$
 (8)

where 6 dB is the correction due to the doubled sound pressure sensed by the microphone caused by the coherent interference at the acoustically hard board.

 $10 \cdot \lg \left(\frac{4 \cdot \pi \cdot R_1^2}{S_0} \right)$ corresponds to the ratio in dB of the surface area of a sphere having the radius R₁ to

the reference surface area of S₀

where

 $S_0 = 1 \text{ m}^2$

$$R_{1} = \sqrt{(R_{0} + d)^{2} + (H - h_{A})^{2}}$$
(9)

The total sound power level $L_{WA,k}$ of the turbine in dB in wind speed bin k is derived by energy summing all the 1/3-octave band sound power levels:

$$L_{\text{WA,k}} = 10 \cdot \log \sum_{i=1}^{28} 10^{\left(\frac{L_{\text{WA,i,k}}}{10}\right)}$$
 (10)

The difference between the sum of the 1/3-octave bands of the total noise and the sum of the 1/3-octave band of the background noise has to be at least 3 dB. Otherwise the result shall not be reported. If the difference is larger than 3 dB and smaller than 6 dB the result shall be marked with an asterisk.

The following results are given in the annex:

- A plot of L_{T,c,l,k} and L_{v,B,l,k} against wind speed;
- A plot of L_{Aeq} against power;
- A plot of rotor speed against power;
- A plot of rotor speed against wind speed;
- A plot of met mast wind speed against wind speed from power curve;
- A plot of nacelle wind speed against wind speed from power curve;
- A time plot of the measurement.
- Power Curve

For the Senvion MM92 in the present configuration the apparent sound power levels are given in Table 8.

4.1 Tonal and frequency analysis

In accordance with the international standard [1] a tonal analysis is carried out. The frequency spectrum of the noise measured on the acoustically hard board is determined on the basis of a narrow band analysis. This analysis is performed after the measurements using the recorded audio signal.

The results of the tonal analysis of the Senvion MM92 according to [1] are given in Table 8.

4.2 One-third octave analysis

The A-weighted sound spectra at all the wind speed bins are given in the annex.

4.3 Type B uncertainties

For these measurements, all the type B measurement uncertainty components as specified in Annex C of the IEC 61400-11 Ed. 3.0, are given in Table 7. For all the type B uncertainties mentioned here, a rectangular distribution of possible values is assumed for simplicity with a range described as "±a". The standard deviation for such a distribution is

$$U = \frac{a}{\sqrt{3}} \tag{11}$$

Table 7 Type B measurement uncertainty components

Uncertainty Components	Value
Calibration, U_{B1}	0.2 dB
Instruments, U _{B2}	Taken from calibration certificates
Board, U_{B3}	0.3 dB
Wind screen insertion loss, U_{B4}	Depending on the frequency
Distance and direction of microphone, U_{B5}	0.1 dB
Air absorption, U_{B6}	Usually no uncertainty assumption
Weather, U_{B7}	0.5 dB
Wind speed (measured), U_{B8} 1)	0.7 m/s
Wind speed (derived), U_{B8} ²⁾	0.2 m/s
Wind speed from power curve, U_{B9}	0.2 m/s

through nacelle anemometer or met mast
 through power curve

DEVIATIONS

There are no deviations from IEC 61400-11 Ed. 3.0.

6 RESULTS

The result of this measurement is given in Table 8. For detailed results please refer to the annex.

For the measured turbine in Mode Standard (2050 kW) the relevant wind speed range according to [1] is between 7.9 m/s and 12.8 m/s.

Table 8 Summary of results at hub height

WS at hub height [m/s]	SPL L _{WA,k} [dB]	Combined uncertainty in the SPL U _{C,L,WA,k} [dB]	Measured rotorspeed [min ⁻¹]	Tonal audibility ΔL _{a,k} [dB]	Frequency of the most prevalent tone [Hz]	Relevant tone?	Relevant tone above 0 dB?
8.0	100.6	1.2	14.2	-1.83	106	Yes	No
8.5	102.1	0.9	14.8	-	-	No	No
9.0	102.8	0.7	15.0	-	-	No	No
9.5	103.2	0.8	15.0	-1.28	600	Yes	No
10.0	103.5	0.8	15.0	-2.51	113	Yes	No
10.0	105.5	0.6	15.0	0.61	600	Yes	Yes
10.5	103.6	0.9	15.0	-1.52	113	Yes	No
10.5	103.0	0.5	13.0	1.72	599	Yes	Yes
11.0	103.4	1.1	15.0	0.53	113	Yes	Yes
11.0	103.4	1.1	13.0	2.14	599	Yes	Yes
11.5	103.1	1.1	15.0	2.16	113	Yes	Yes
11.5	103.1	1.1	13.0	1.88	602	Yes	Yes
12.0	103.4	1.3	15.0	1.02	113	Yes	Yes
12.0	105.4	1.3	13.0	2.06	599	Yes	Yes
12.5	103.9	1.3	15.0	0.70	112	Yes	Yes
12.3	103.5 1.5 13.0	3.42	598	Yes	Yes		
13.0	103.8	1.3	15.0	0.13	113	Yes	Yes
	100.0	1.5	13.0	4.84	598	Yes	Yes

Table 9 Summary of results at 10 m height

=	_		
WS at 10 m height [m/s]	SPL L _{WA,10m,k} [dB]	Combined uncertainty in the SPL Uc,L,WA,10m,k [dB]	
5	97.8	1.2	
6	102.2	0.7	
7	103.5	0.8	
8	103.1	1.1	
9	103.8	1.3	

7 CONCLUSION

GL Garrad Hassan Deutschland GmbH supported by GL Garrad Hassan Canada Inc. undertook measurements of the acoustic noise emissions of turbine T01 of the Napier Wind Farm.

As per REA number 8388-9B7N4J the measurements and analysis of the sound power level and tonality described in this report are based on the international standard IEC 61400-11 Ed. 3.0. The analysis of the sound power level was carried out using the standardised wind speed which was derived from the calculated power curve provided by the customer (see annex).

The values of measured Tonal audibility $\Delta L_{a,k}$ [dB] shown in annex Figure 10.33 do not comply with the maximum tonal audibility values noted in the Acoustic Assessment Report. The tonal audibility also exceeds the 2017 Ontario Compliance Protocol allowable value of 3 dB. The [1] considers a tone as relevant if more than 20 % of the datasets within a BIN show a tone of same origin and their combined $\Delta L_{a,k}$ exceeds the audibility criteria of $\Delta L_{a,k}$ >-3 dB.

The results of the measurement confirm that turbine T01 with serial number 93129 does not exceed the value of the maximum sound power level shown in Table B1 of the Schedule B of the REA number 8388-9B7N4J (Annex Figure 10.57) including a 0.5 dB tolerance included in the 2017 Ontario Compliance Protocol. The wind turbine generator system is considered in compliance on sound power level, when verified against the 2017 Ontario Compliance Protocol.

It is assured that this report has been drawn up impartially and with best knowledge and conscience.

8 REFERENCES

/1/ IEC 61400-11 Ed. 3.0 Wind Turbines,

Part 11: Acoustic Noise Measurement Techniques

2012-11-07

/2/ ISI-RA-MEA-4601

Noise emission measurements on wind turbines – one third octave level method 2017-03-01

This document is part of the management system of the GL Garrad Hassan Deutschland GmbH. It is possible to view this document at GH-D.

/3/ ISI-RA-MEA-2501

Calibration Programs

2017-06-22

This document is part of the quality management documentation of the GL Garrad Hassan Deutschland GmbH. It is possible to view this document at GH-D.

9 LIST OF ABBREVIATIONS

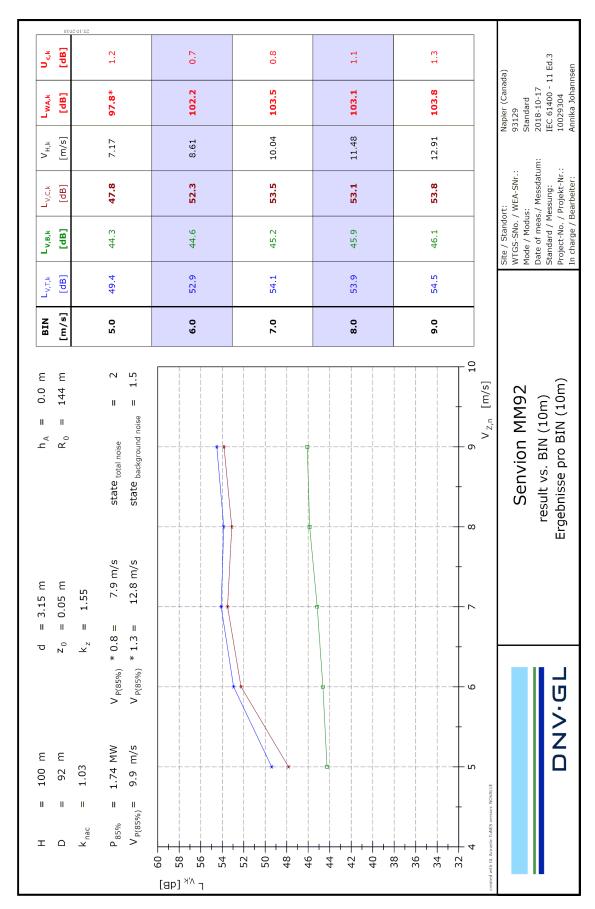

J	OI ADDREVIATIONS	
Abbreviation		Unit
d	distance from rotor centre to tower axis	[m]
D	rotor diameter	[m]
Н	height of rotor centre above local ground near the wind turbine	[m]
L_A or L_C	A or C-weighted sound pressure level	[dB]
L_{Aeq}	equivalent continuous A-weighted sound pressure level	[dB]
$L_{\sf pn,j,k}$	sound pressure level of masking noise within a critical band in the ' $j^{th\prime}$ ' spectrum at the ' $k^{th\prime}$ ' wind speed bin	[dB]
$L_{\sf pn,avg,j,k}$	average of analysis bandwidth sound pressure levels of masking noise in the ' $j^{th\prime}$ ' spectra at the ' $k^{th\prime}$ ' wind speed bin	[dB]
$L_{\rm pt,j,k}$	sound pressure level of the tone or tones in the $j^{th'}$ spectra at the $k^{th'}$ wind speed bin	[dB]
$L_{WA,k}$	apparent sound power level, where k is a wind speed centre value	[dB]
log	logarithm to base 10	
P _m	measured electric power	[kW]
<i>P</i> n	normalised electric power	[kW]
P _k	power curve value at wind bin k	[kW]
P _{tol}	tolerance of the power reading	[kW]
R_0	reference distance	[m]
R_1	slant distance from rotor centre to actual measurement position	[m]
S_0	reference area, $S_0 = 1 \text{ m}^2$	[m]
SPL	sound power level	[dB]
T_{C}	air temperature	[°C]
T_{K}	absolute air temperature	[K]
<i>U</i> A	Uncertainty components of Type A	[dB]
u_{B}	Uncertainty components of Type B	[dB]
$V_{H,n}$	normalised wind speed at hub height H	[m/s]
$V_{P,n}$	normalised wind speed derived from power curve	[m/s]
V_z	wind speed at height z	[m/s]
$V_{nac,m}$	measured wind speed from nacelle anemometer	[m/s]
$V_{nac,n}$	normalised wind speed from nacelle anemometer	[m/s]
f	frequency of the tone	[Hz]
f c	centre frequency of critical band	[Hz]
p	atmospheric pressure	[kPa]
, Z ₀	roughness length	[m]
Z 0ref	reference roughness length, 0.05 m	[m]
Z	anemometer height	[m]
κ	Ratio between normalised wind speed and measured wind speed	[-]
⊿L _{tn,j,k}	tonality of the 'j th' spectrum at 'k th' wind speed	[dB]
Φ	inclination angle	[°]
$V_{Z,m}$	is the measured wind speed with an anemometer at height Z of at least 10 m	[m/s]
<i>V</i> _{B,n}	is the normalised wind speed at hub height	[m/s]
•	· -	

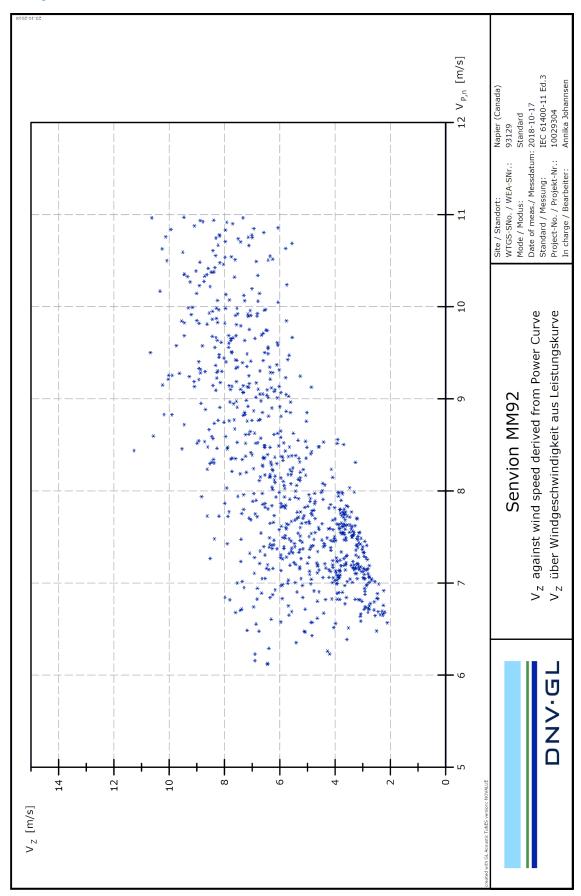
Description of the subscripts and indexes of the formulas

Description o	the subscripts and indexes of the formulas
İ	1/3 octave band number (e.g. $i=1$ for 20 Hz centre frequency, $i=2$ for 25 Hz centre frequency,, $i=28$ for 10 kHz centre frequency)
j	10 s measurement period number (each bin should have the minimum of 10 points per bin therefore $j = 1$ to 10 or greater)
k	wind speed bin (i.e. $k = 6$ m/s bin, $k = 6.5$ m/s bin, $k = 7$ m/s bin, etc.)
V	bin centre value; of measured 1/3 octave spectrum
n	normalized spectrum
N	number of measurements in wind speed k
Т	total noise
В	background noise
С	background corrected total noise

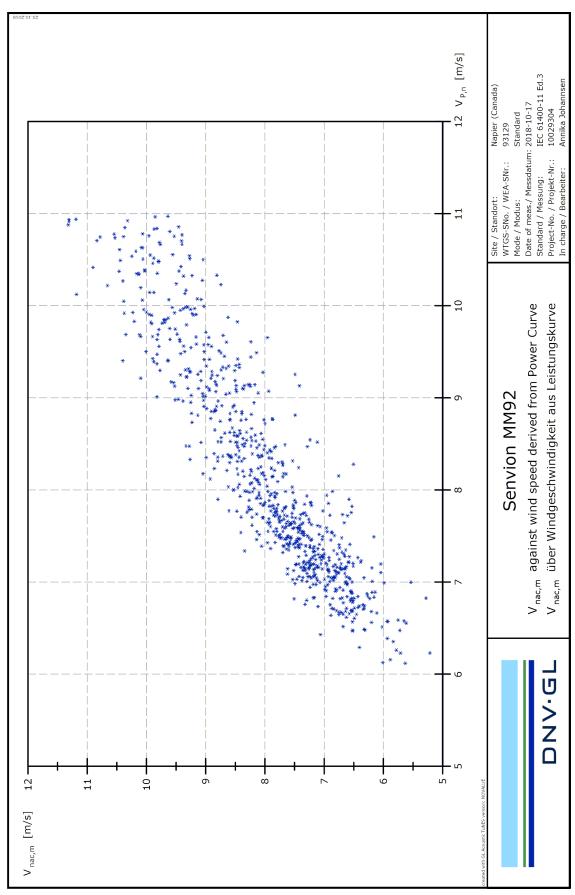
10 APPENDIX

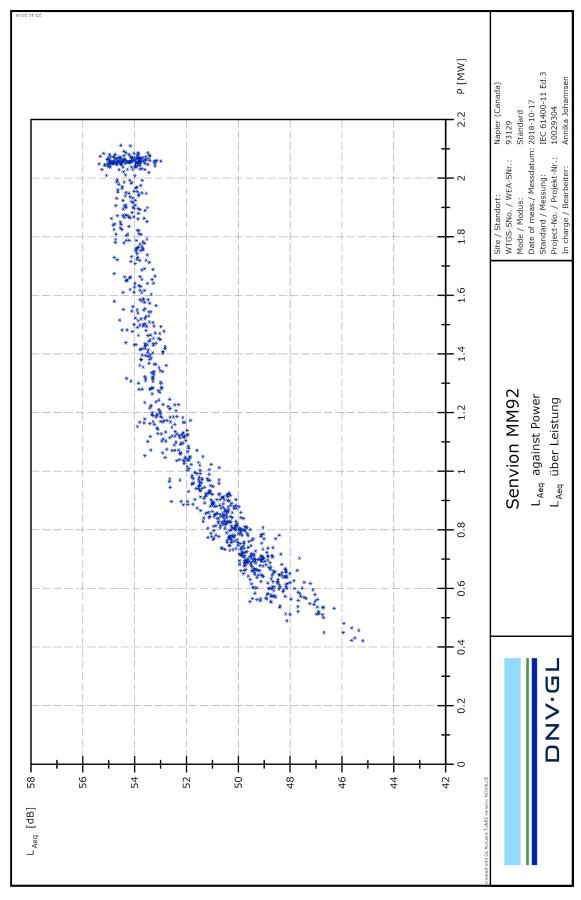
10.1 L_{Aeq} vs. wind speed at 10 m height

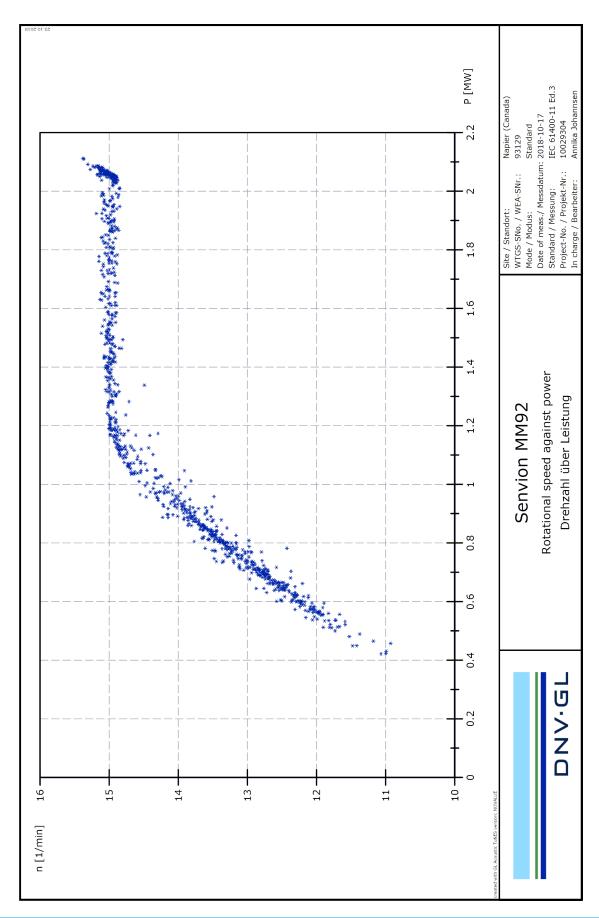

10.2 L_{Aeq} vs. wind speed at hub height

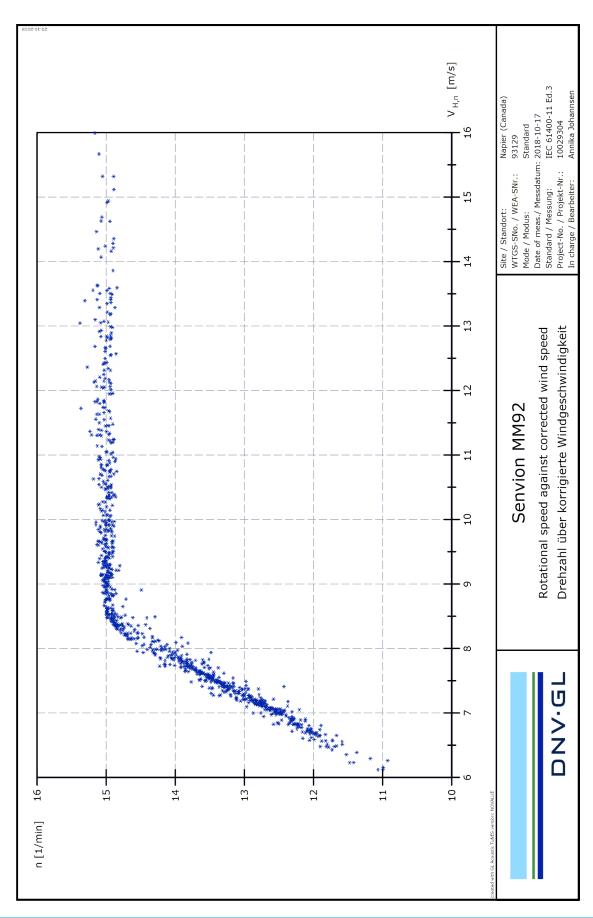

10.3 Summary of analysis input and results at hub height

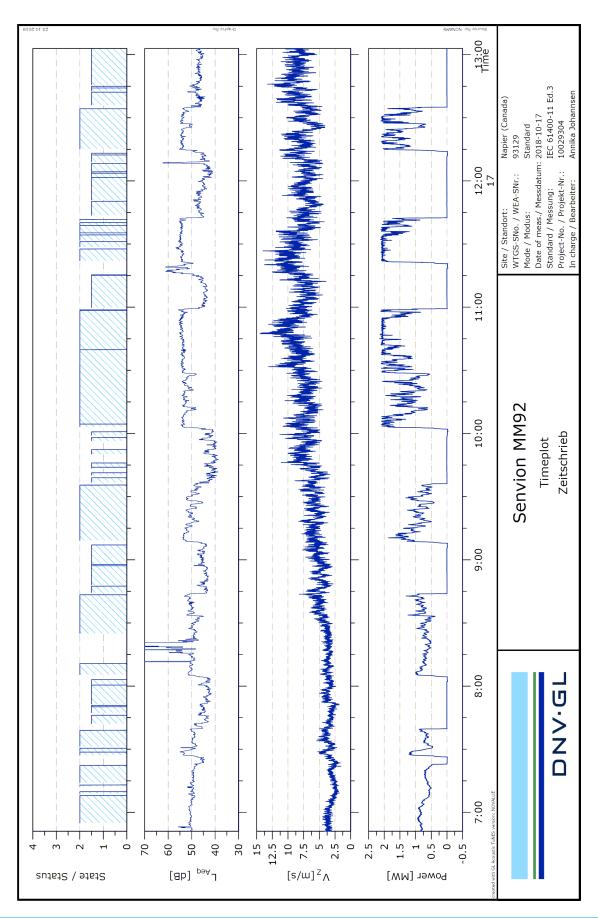
Ξ C	= 1	100 m 92 m	$d = 3.15 \text{m}$ $z_0 = 0.05 \text{m}$	h _A = =	0.0 m	BIN [m/s]	L _{v,T,k} [dB]	L _{v,B,k} [dB]	L _{V,C,k} [dB]	total n [no.]	backg.n [no.]	V _{Z,k} [m/s]	P _k [MW]	rpm _k [U/min]	L _{wA,k} [dB]	U _{c,k} [dB]
					: : :	6.5	47.4	44.1	45.1	45	28	4.53	0.54	11.9	95.1*	2.1
ж _{пас}		1.03 1.55	state total noise State background noise	II II	1.5	7.0	48.9	44.0	47.3	151	25	4.88	99.0	12.6	97.3*	1.5
				l		7.5	50.4	44.8	49.0	169	24	5.23	0.81	13.4	*0'66	1.4
P _{85%} = V _{P(85%)} =		1.74 MW 9.9 m/s	$V_{P(85\%)} * 0.8$ $V_{P(85\%)} * 1.3$	11 11	7.9 m/s 12.8 m/s	8.0	51.6	45.1	50.6	106	25	5.58	0.97	14.2	100.6	1.2
(2, 50)						8.5	52.8	44.6	52.1	83	33	5.93	1.16	14.8	102.1	6.0
[gp]						9.0	53.4	44.9	52.8	75	34	6.27	1.38	15.0	102.8	0.7
- 1 20 √ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			*	*	*	9.5	53.8	45.2	53.2	64	38	6.62	1.58	15.0	103.2	0.8
54+		*	* * * * * * * * * * * * * * * * * * *	*	 	10.0	54.1	45.2	53.5	46	25	6.97	1.77	15.0	103.5	0.8
50 +		* * *				10.5	54.2	44.8	53.6	39	42	7.32	1.90	15.0	103.6	6.0
4 4 4	*	*				11.0	54.0	45.4	53.4	31	44	7.67	2.00	15.0	103.4	1.1
2 4	*					11.5	53.9	45.9	53.1	56	51	8.02	2.06	15.1	103.1	1.1
42 +	*					12.0	54.1	45.7	53.4	24	36	8.36	2.06	15.0	103.4	1.3
38						12.5	54.6	46.5	53.9	18	42	8.71	2.06	15.0	103.9	1.3
36+						13.0	54.5	46.0	53.8	21	43	90.6	2.06	15.0	103.8	1.3
34	- - - - -					13.5	54.5	46.1	53.8	17	27	9.41	2.06	15.0	103.8	1.3
5 6 7 created with GL Acoustic TuNES version: NOVALUI	. 6	7 8 9	10 11 12 13	14 15	16 17 18 V _{H,n} [m/s]											
			DN V.GL			Senvion MM92 Results relating to hub height Ergebnisse bezogen auf Nabenhöhe	Senvion MM92 relating to hub height	MM9 or hub he	2 sight enhöhe		Sit W Wo Mo Da Sta Pro	Site / Standort: WTGS-SNo. / WEA-SNr.: Mode / Modus: Date of meas./ Messdatum: Standard / Messung: Project-No. / Projekt-Nr.:	t: WEA-SNr ; / Messdatur ssung: rojekt-Nr.:	ë	Napier (Canada) 93129 Standard 2018-10-17 IEC 61400 - 11 Ed.3 10029304	() Ed.3
											In	charge / Be	arbeiter:		Annika Johannsen	en

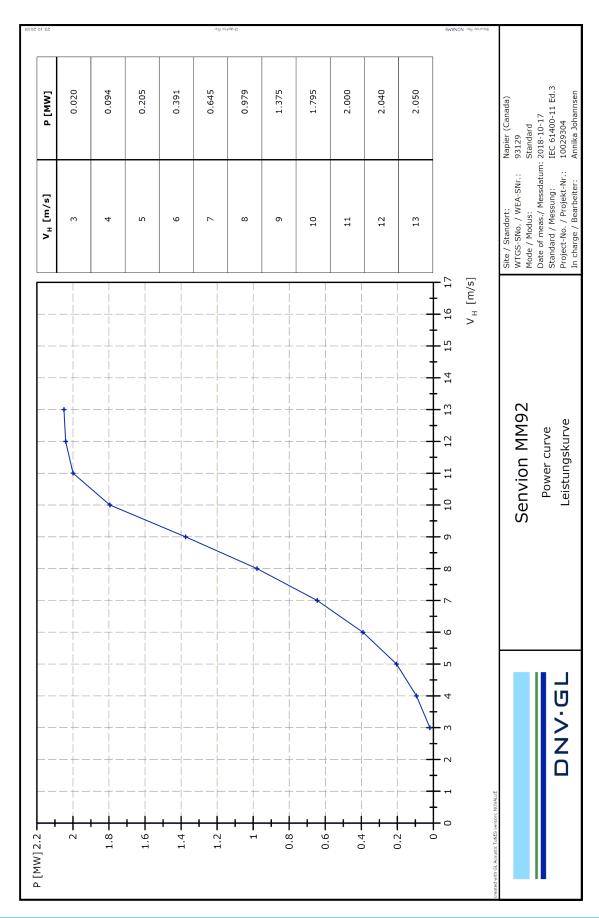

10.4 Summary of analysis input and results at 10m height

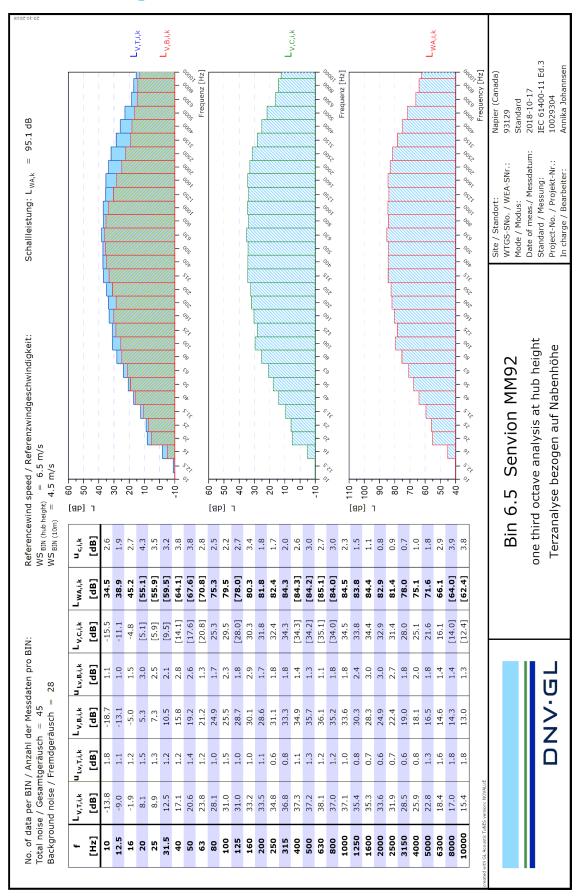

10.5 Measured wind speed from met mast vs. wind speed from power curve

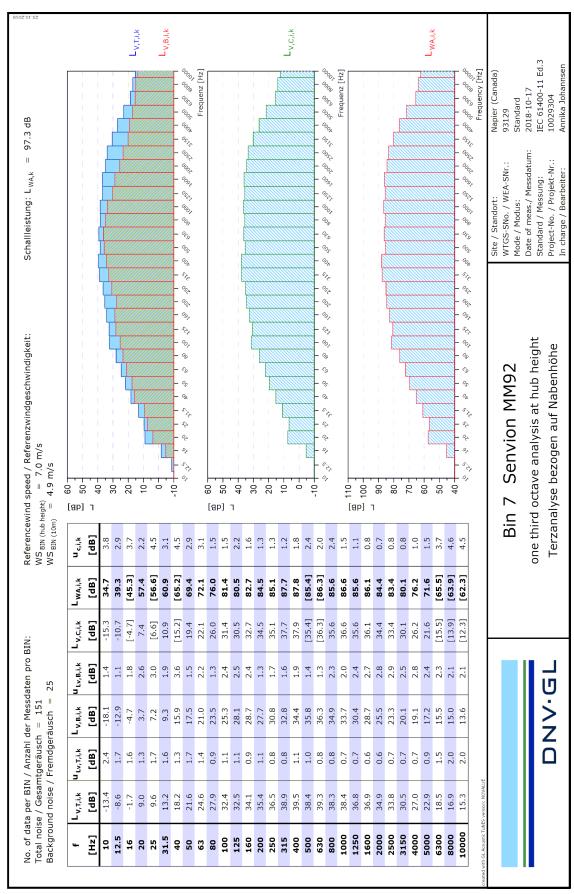

10.6 Measured wind speed from nacelle anemometer vs. wind speed from power curve

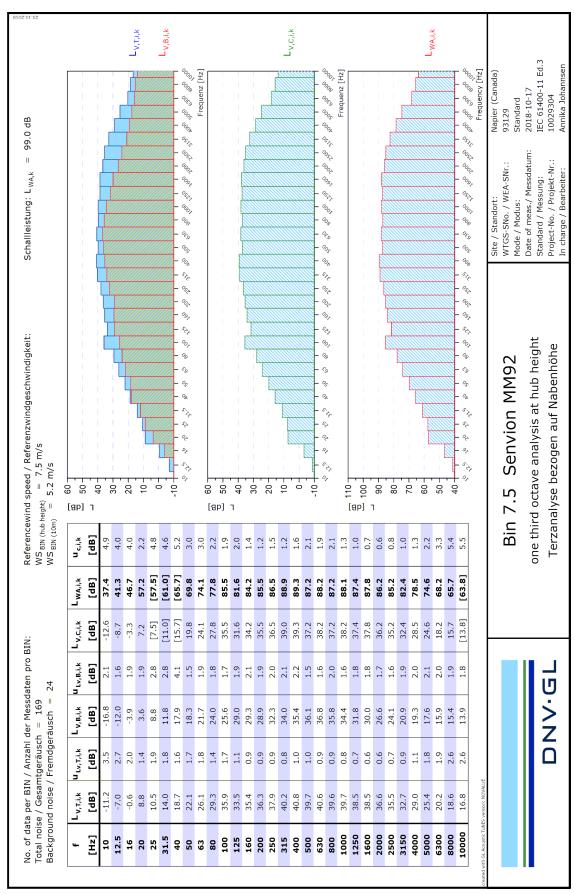

10.7 L_{Aeq} vs. active power

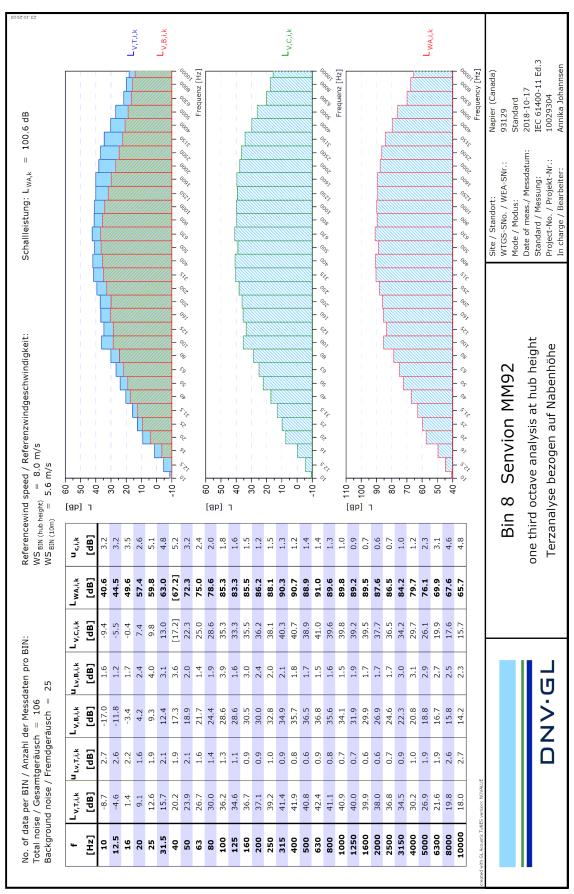

10.8 Rotor speed vs. active power

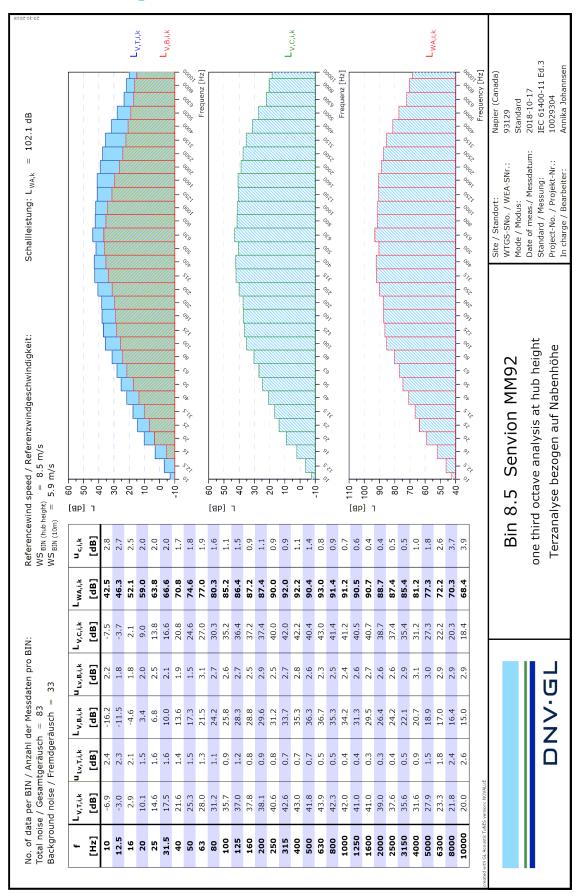

10.9 Rotor speed vs. corrected wind speed

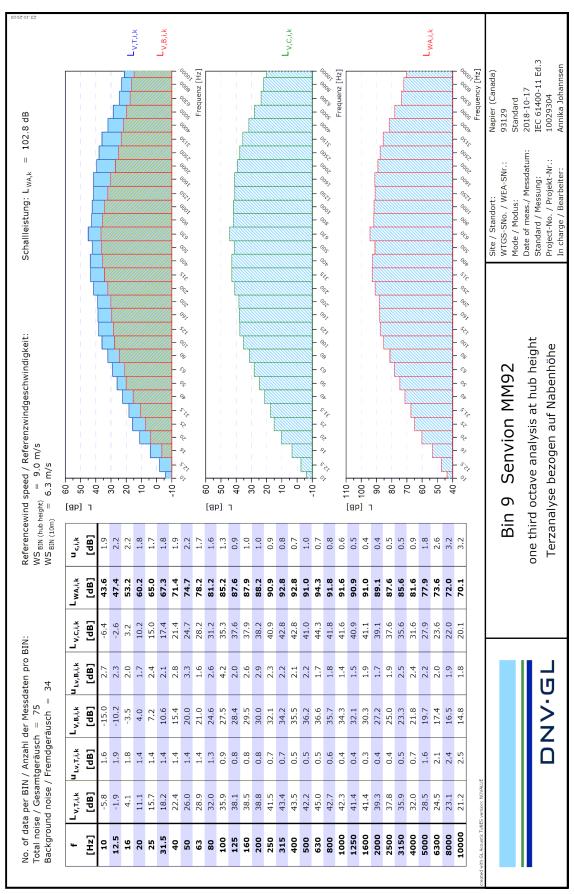

10.10 Time plot of measurement

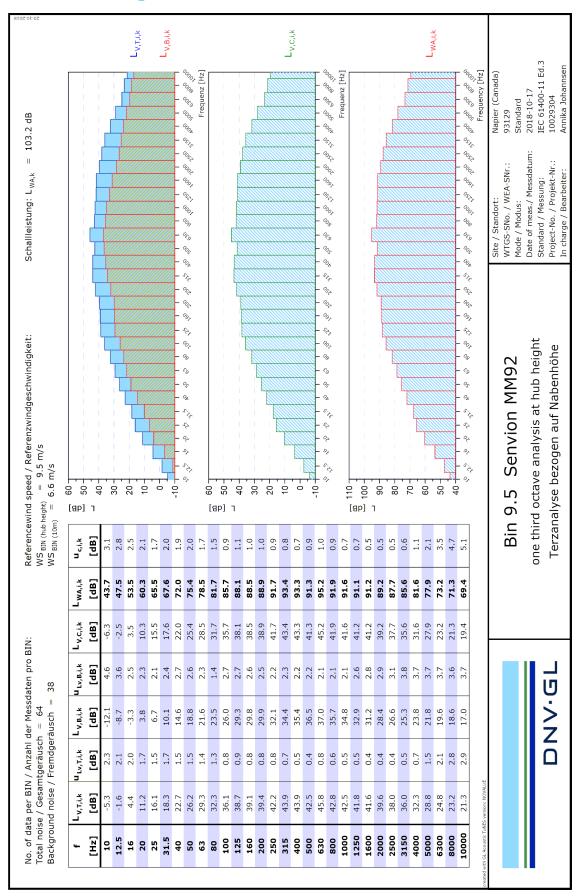

10.11 Power Curve

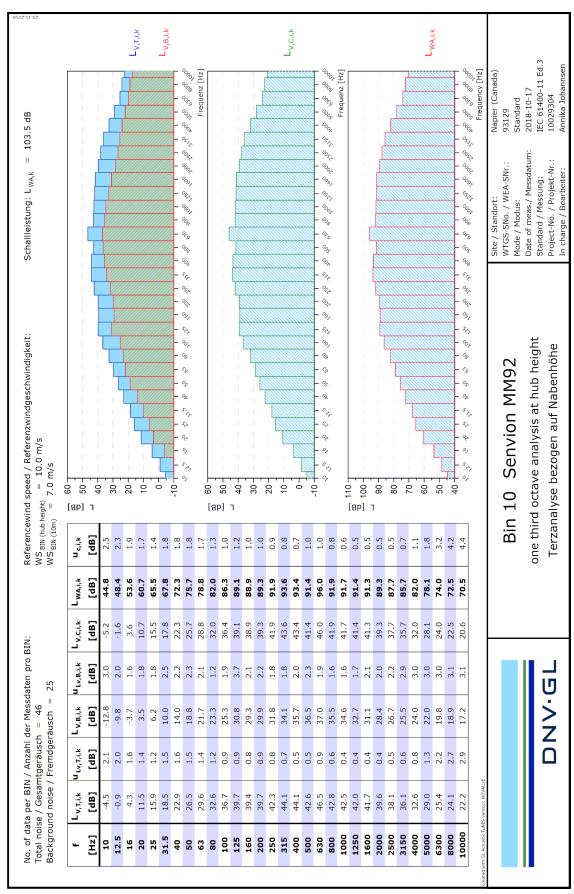

10.12 Third-octave sound power spectra at a WS of 6.5 m/s at hub height

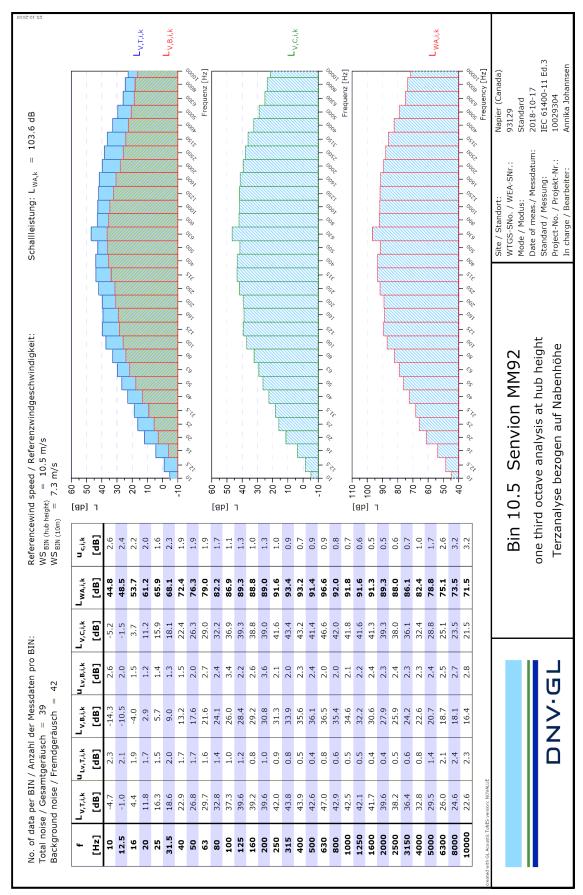

10.13 Third-octave sound power spectra at a WS of 7.0 m/s at hub height

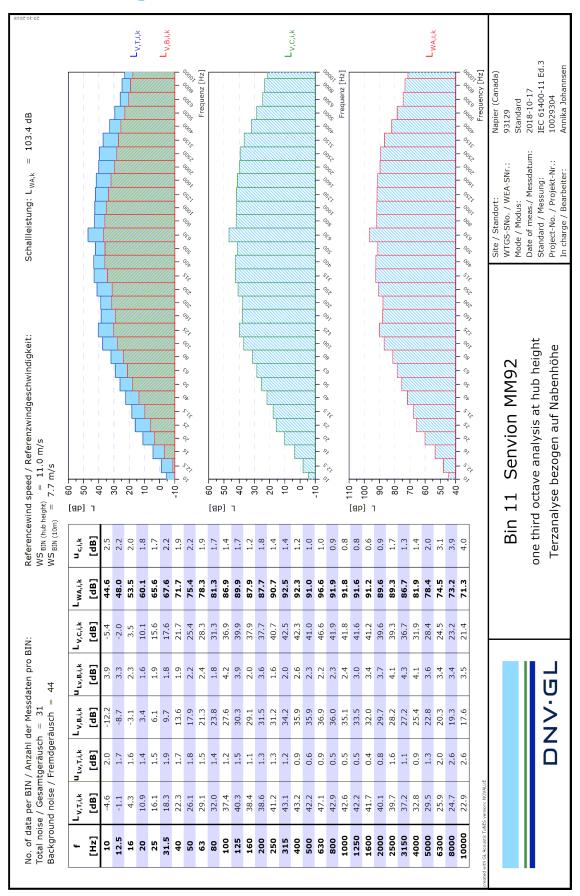

10.14 Third-octave sound power spectra at a WS of 7.5 m/s at hub height

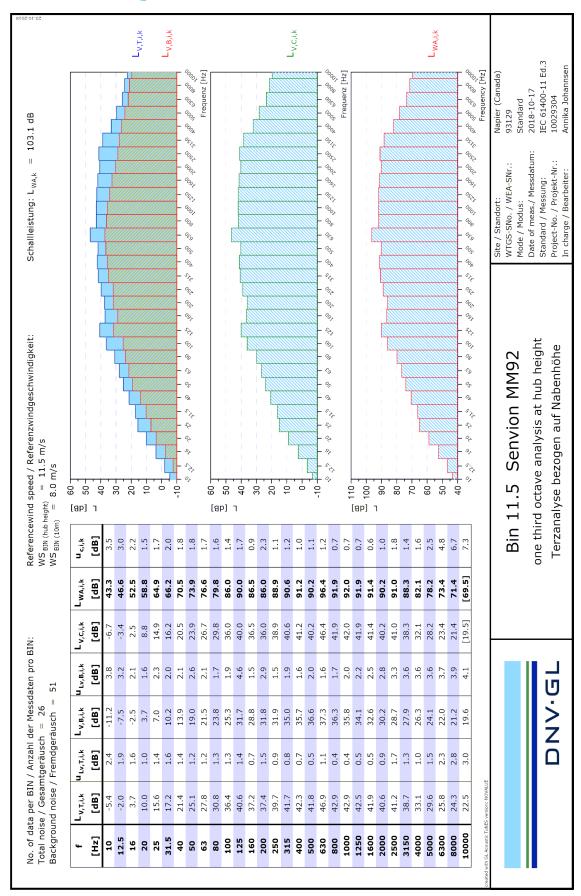

10.15 Third-octave sound power spectra at a WS of 8.0 m/s at hub height

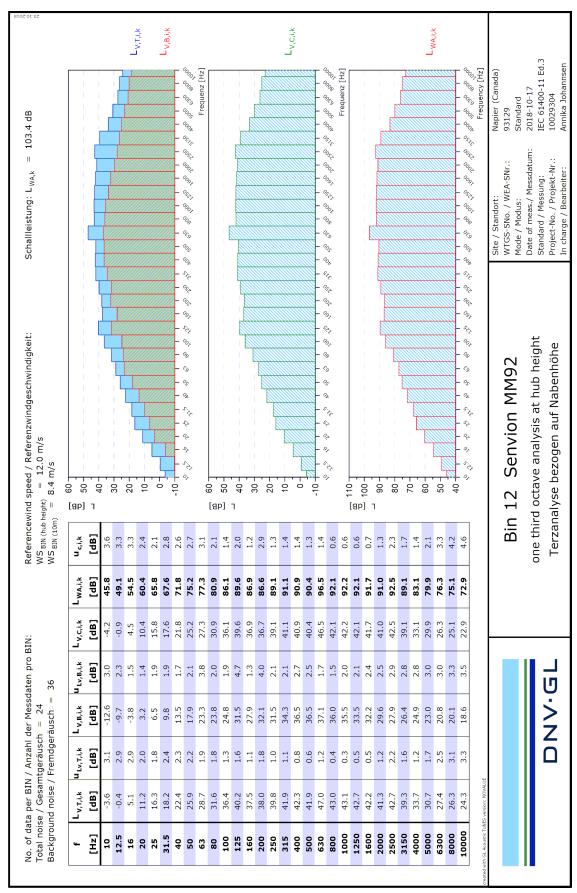

10.16 Third-octave sound power spectra at a WS of 8.5 m/s at hub height

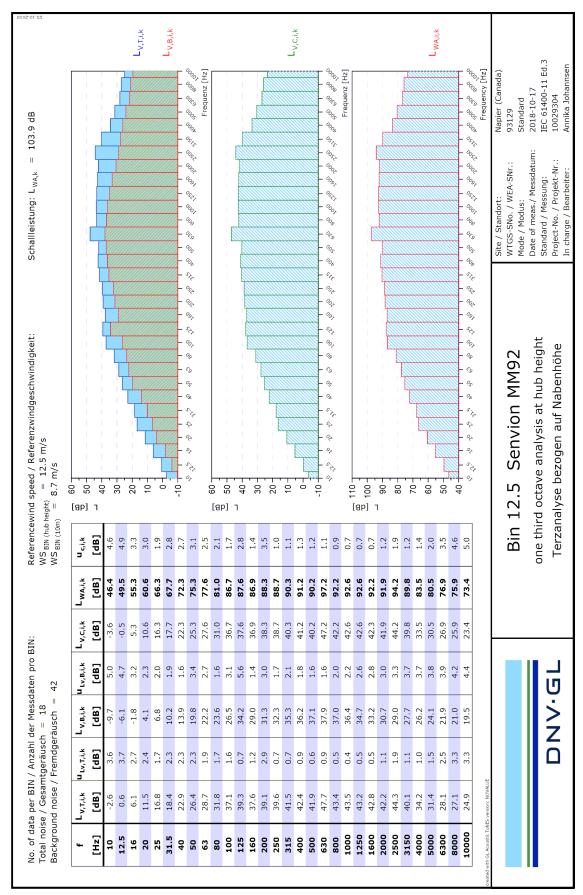

10.17 Third-octave sound power spectra at a WS of 9.0 m/s at hub height

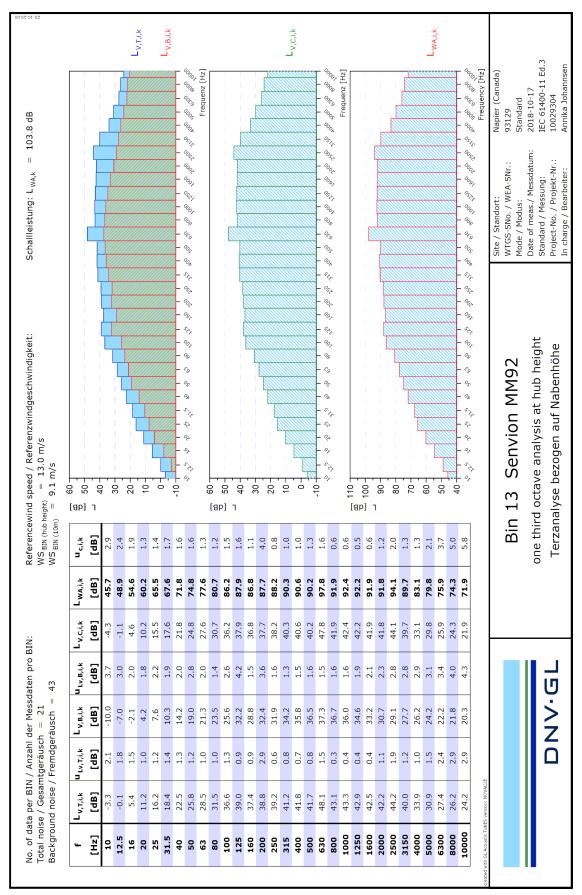

10.18 Third-octave sound power spectra at a WS of 9.5 m/s at hub height

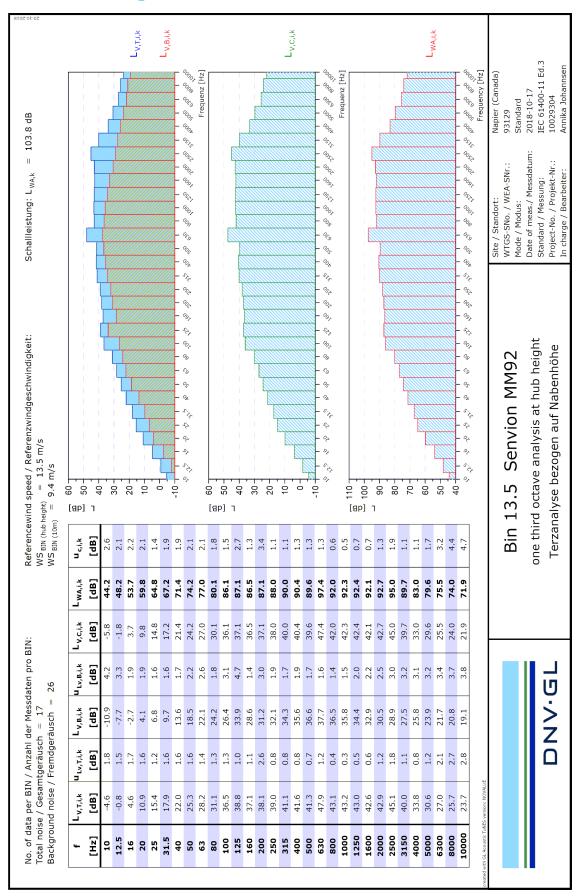

10.19 Third-octave sound power spectra at a WS of 10.0 m/s at hub height

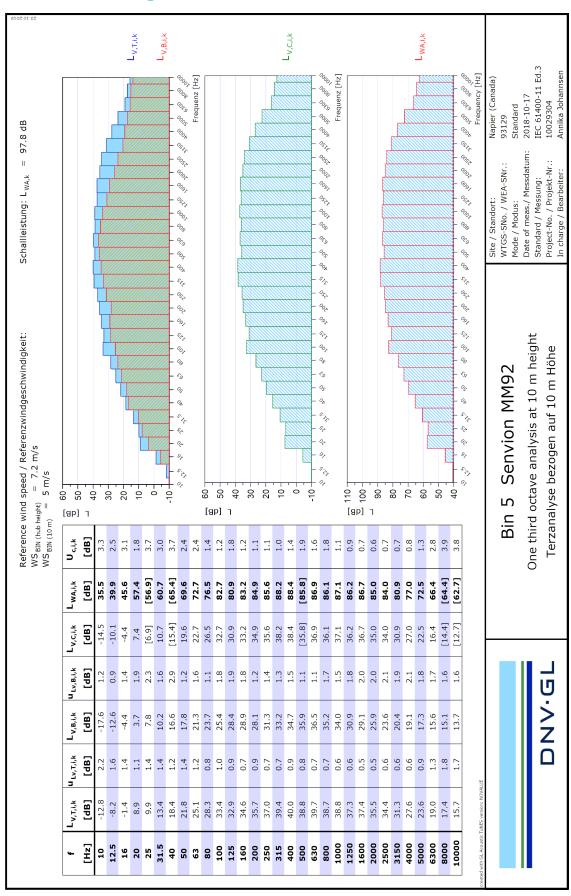

10.20 Third-octave sound power spectra at a WS of 10.5 m/s at hub height

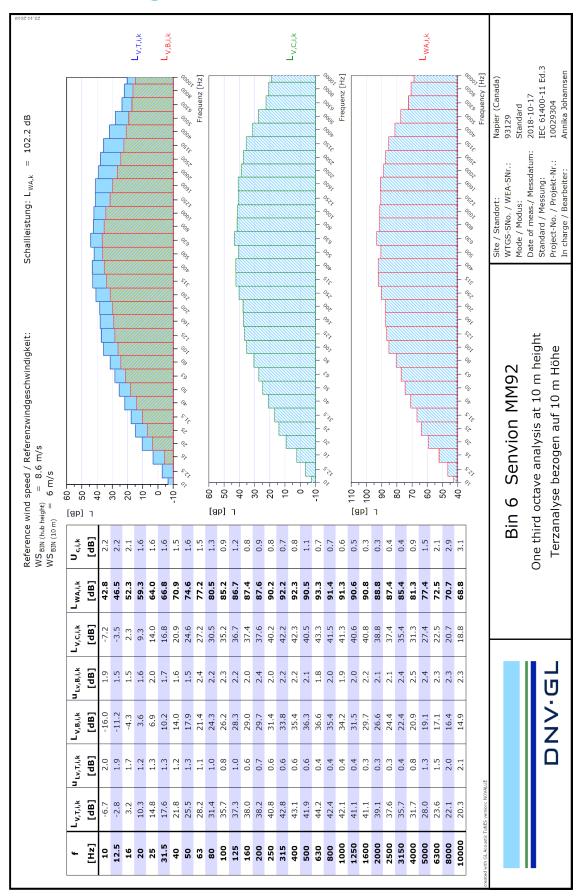

10.21 Third-octave sound power spectra at a WS of 11.0 m/s at hub height

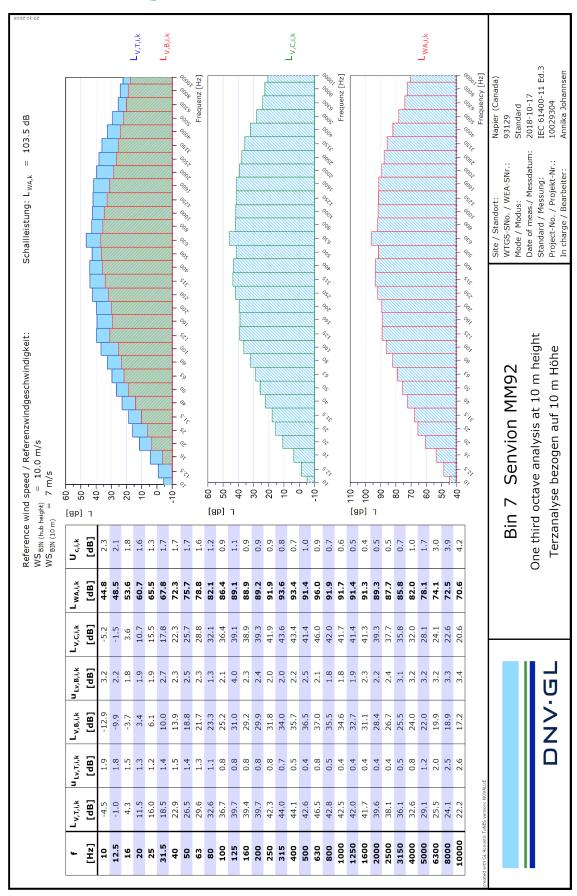

10.22 Third-octave sound power spectra at a WS of 11.5 m/s at hub height

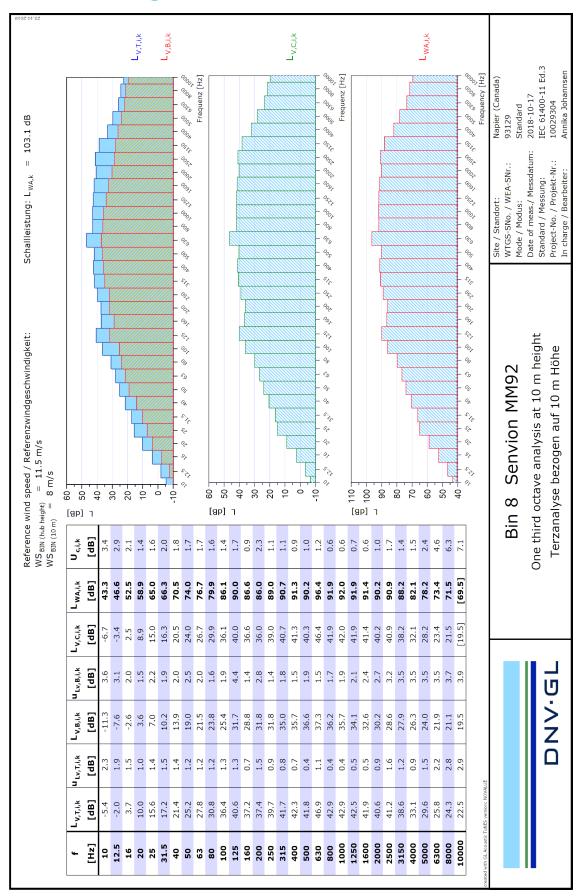

10.23 Third-octave sound power spectra at a WS of 12.0 m/s at hub height

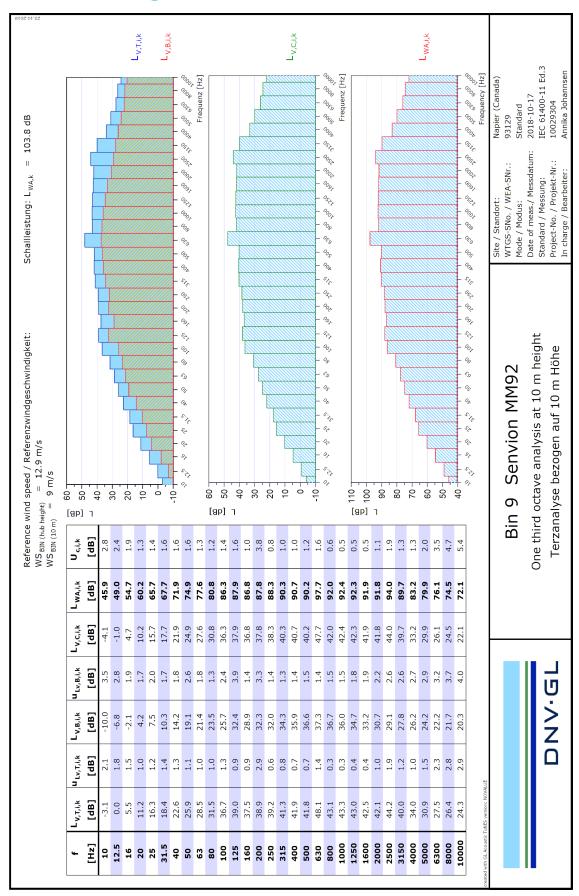

10.24 Third-octave sound power spectra at a WS of 12.5 m/s at hub height

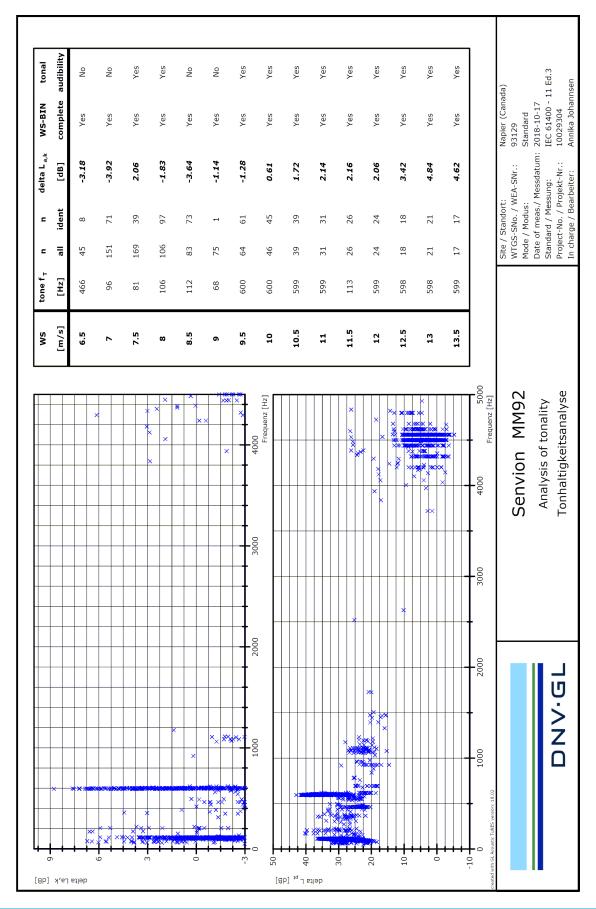

10.25 Third-octave sound power spectra at a WS of 13.0 m/s at hub height

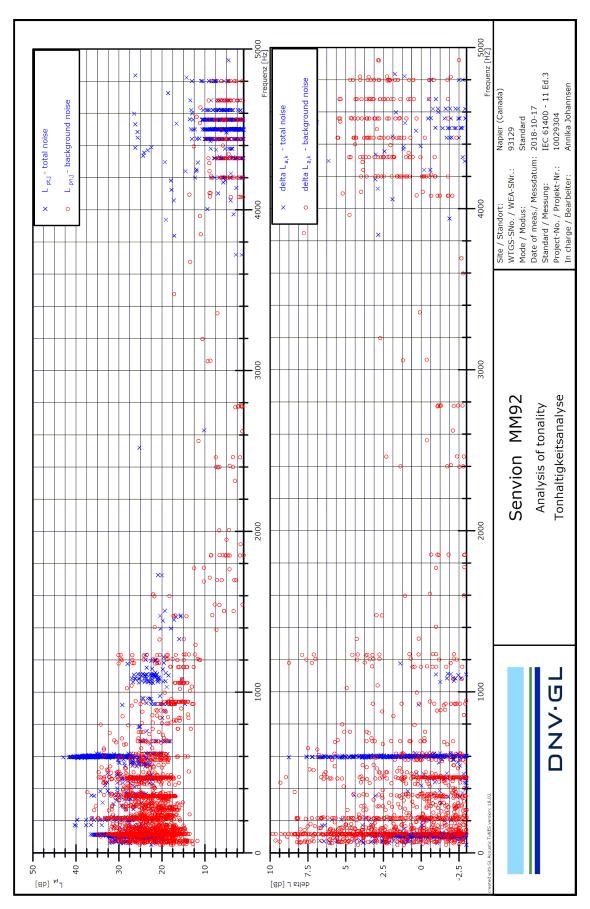

10.26 Third-octave sound power spectra at a WS of 13.5 m/s at hub height

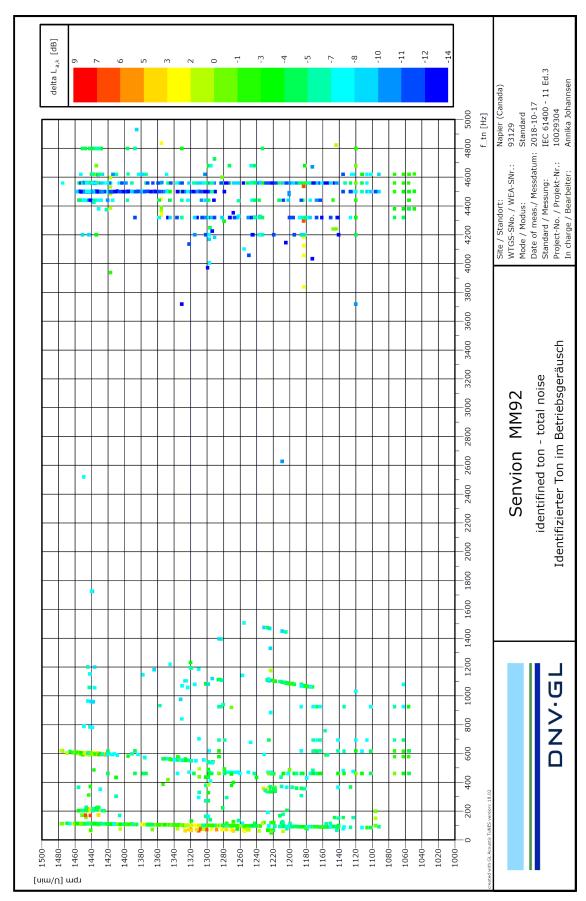

10.27 Third-octave sound power spectra at a WS of 5 m/s at 10 m height

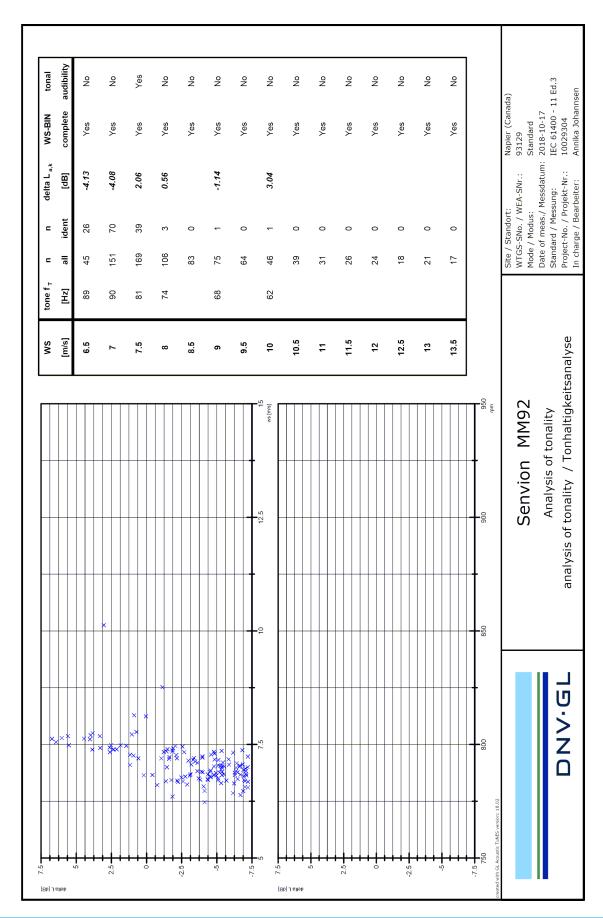

10.28 Third-octave sound power spectra at a WS of 6 m/s at 10 m height

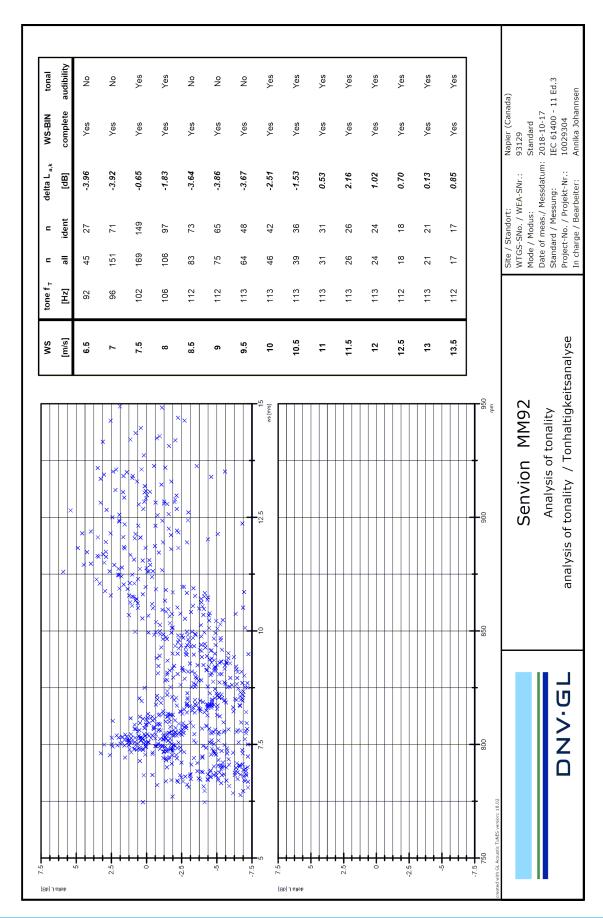

10.29 Third-octave sound power spectra at a WS of 7 m/s at 10 m height

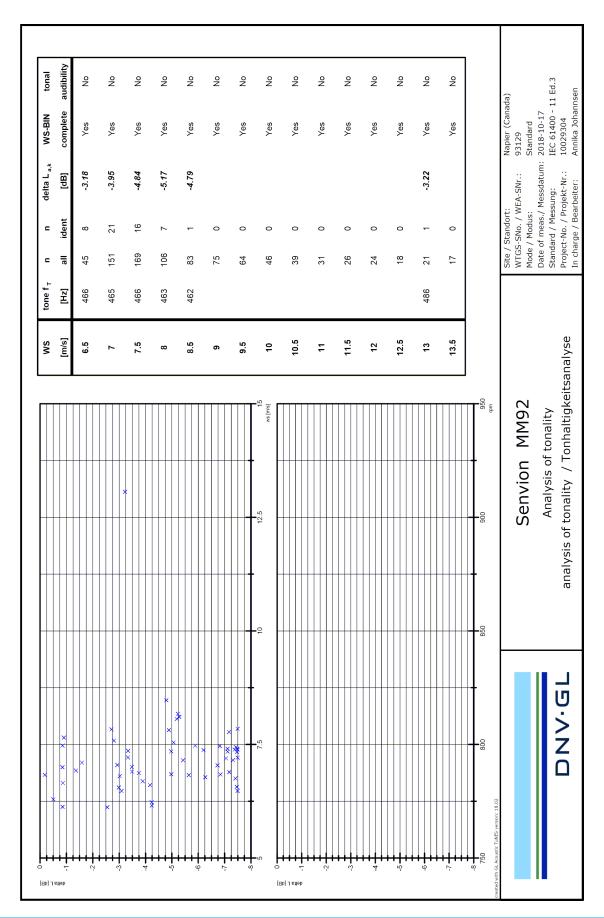

10.30 Third-octave sound power spectra at a WS of 8 m/s at 10 m height

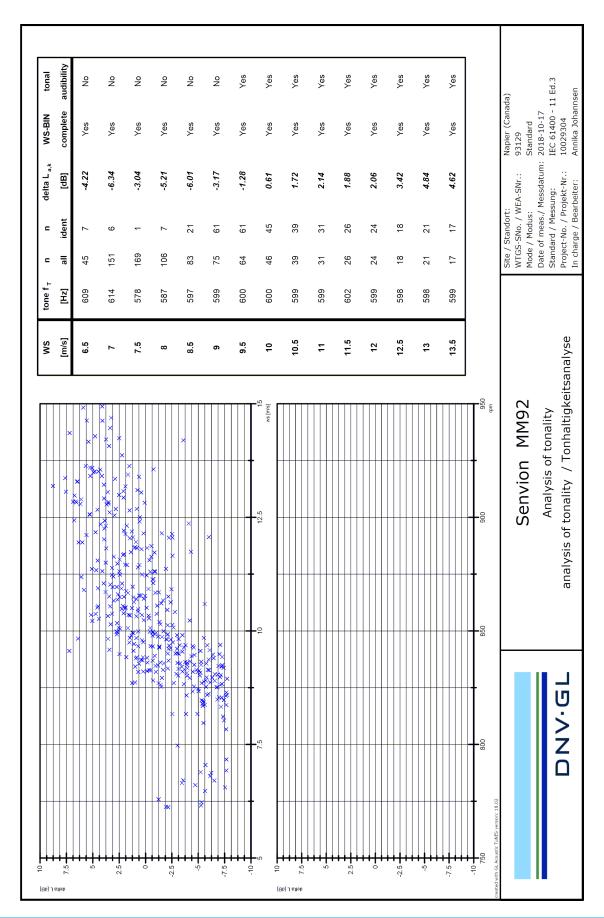

10.31 Third-octave sound power spectra at a WS of 9 m/s at 10 m height

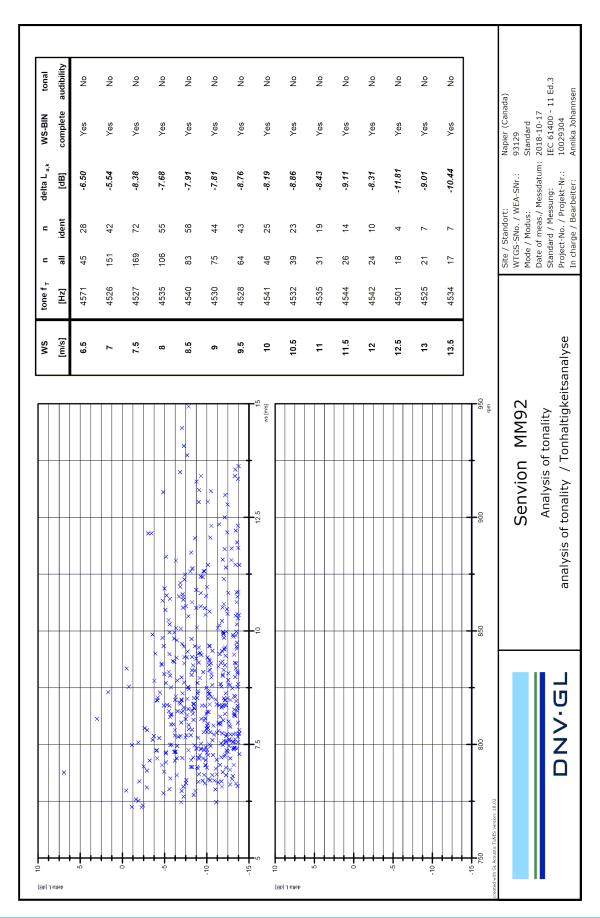

10.33 Tonality analysis overview - all

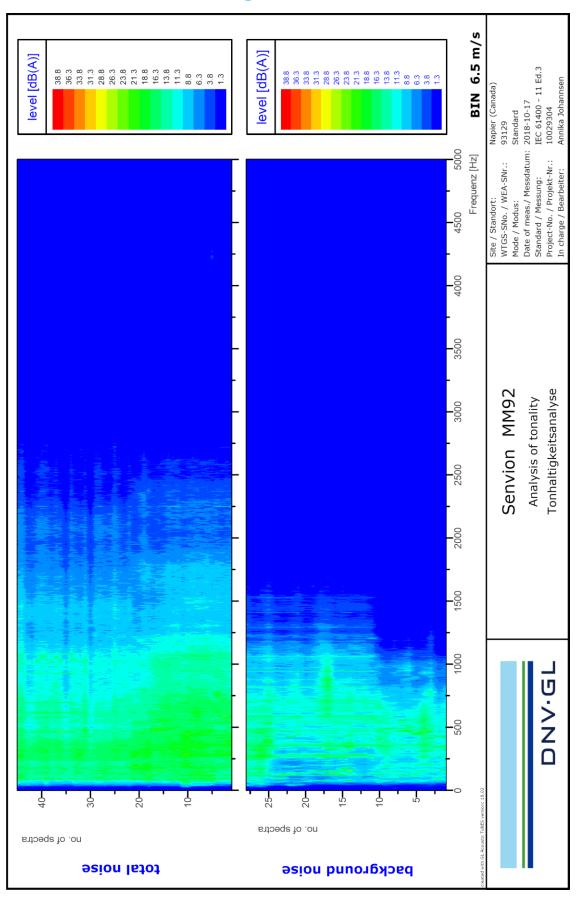

10.34 Tonality analysis - $\Delta L_{pn,j}$ and $\Delta L_{a,k}$ vs. frequency

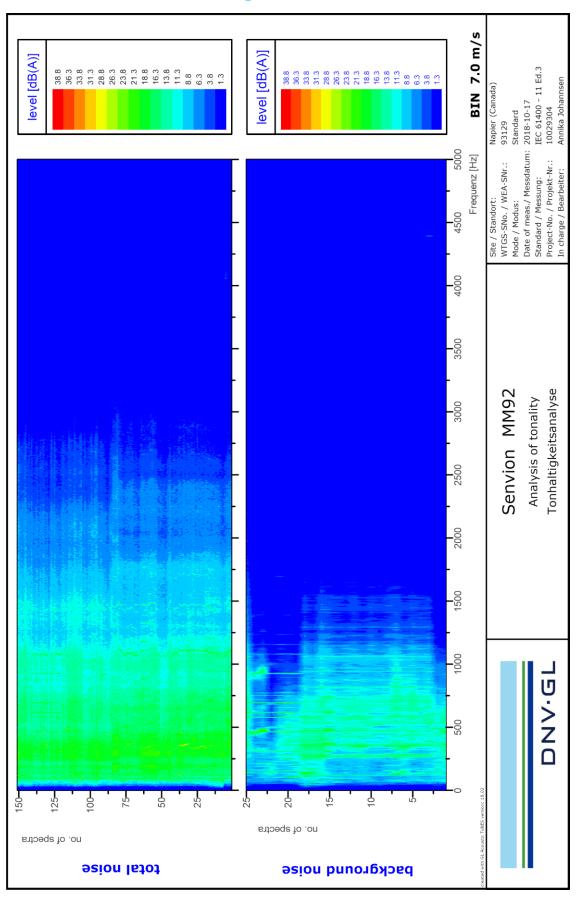

10.35 Tonality analysis - rpm vs. frequency for the identified tones in the total noise

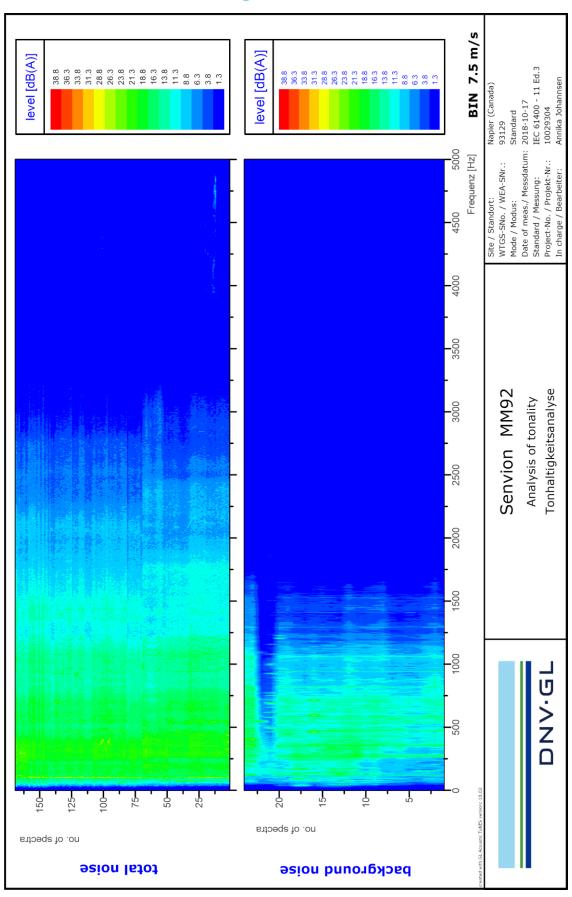

10.36 Tonality analysis - wind bin overview (page 1)

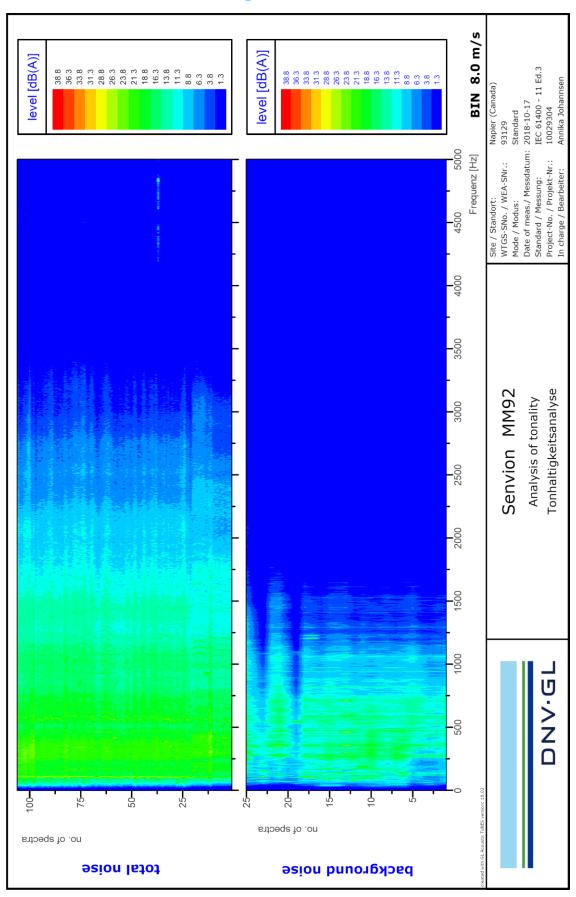

10.37 Tonality analysis - wind bin overview (page 2)

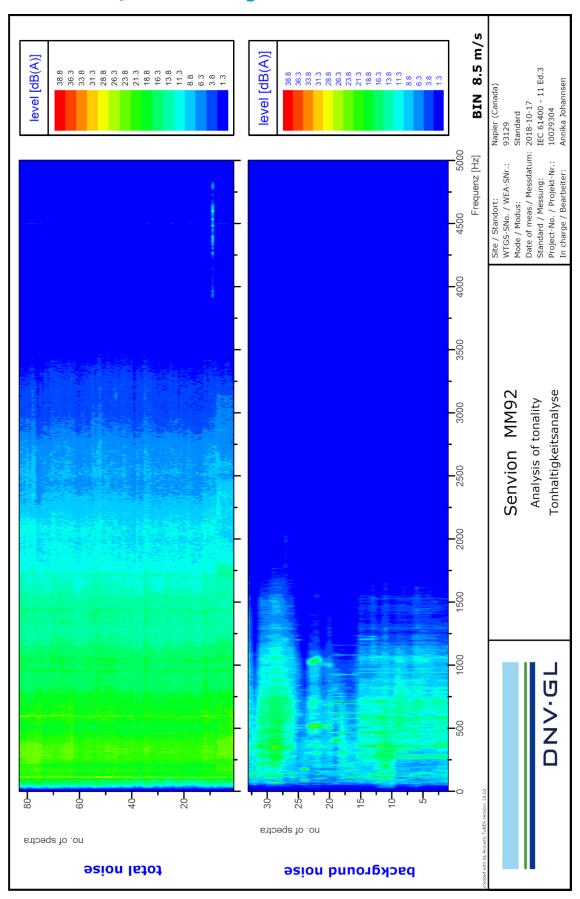

10.38 Tonality analysis - wind bin overview (page 3)

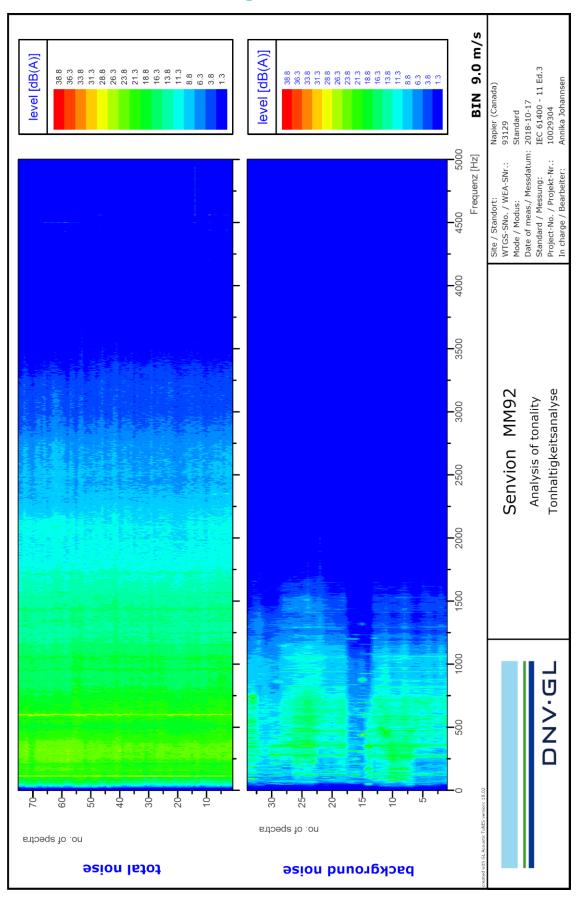

10.39 Tonality analysis - wind bin overview (page 4)

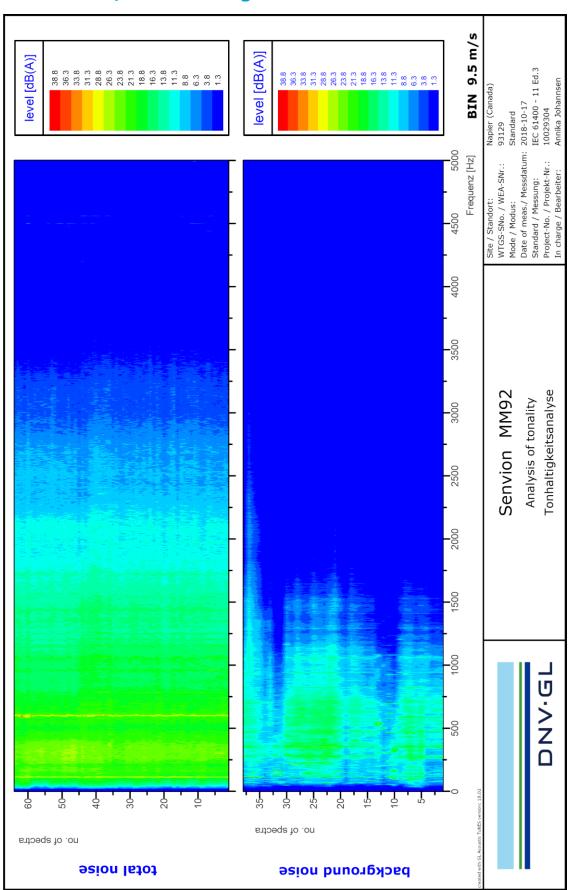

10.40 Tonality analysis - wind bin overview (page 5)

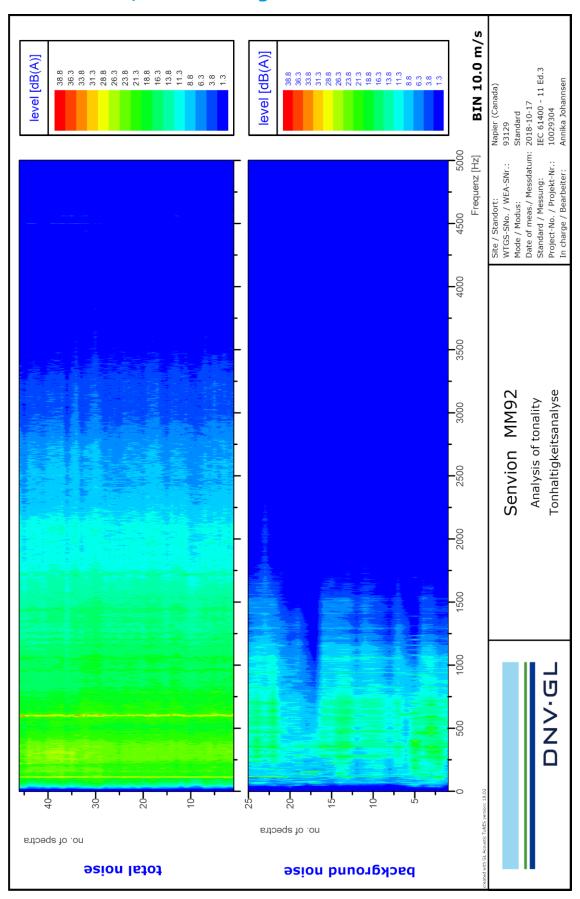

10.41 Frequency spectra of total and background noise at a WS of 6.5 m/s at hub height

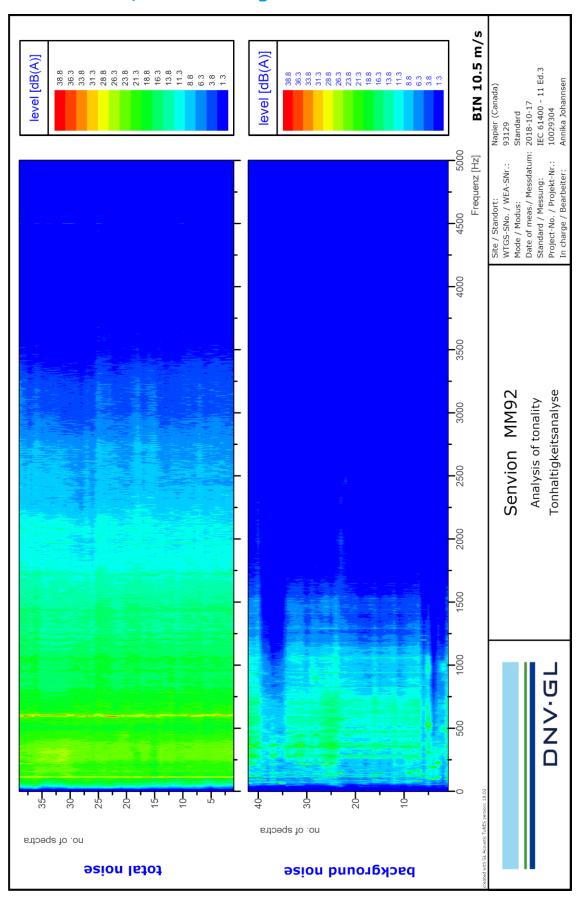

10.42 Frequency spectra of total and background noise at a WS of 7.0 m/s at hub height

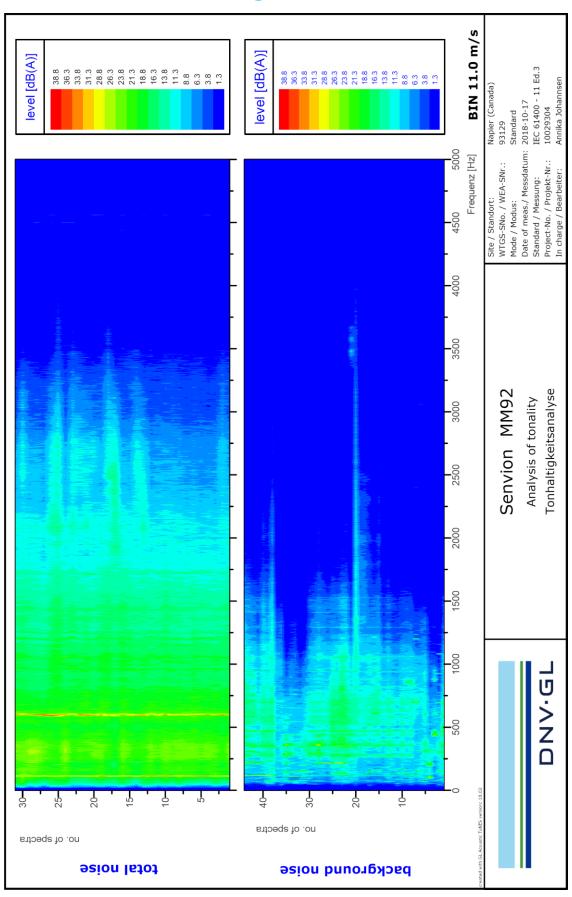

10.43 Frequency spectra of total and background noise at a WS of 7.5 m/s at hub height

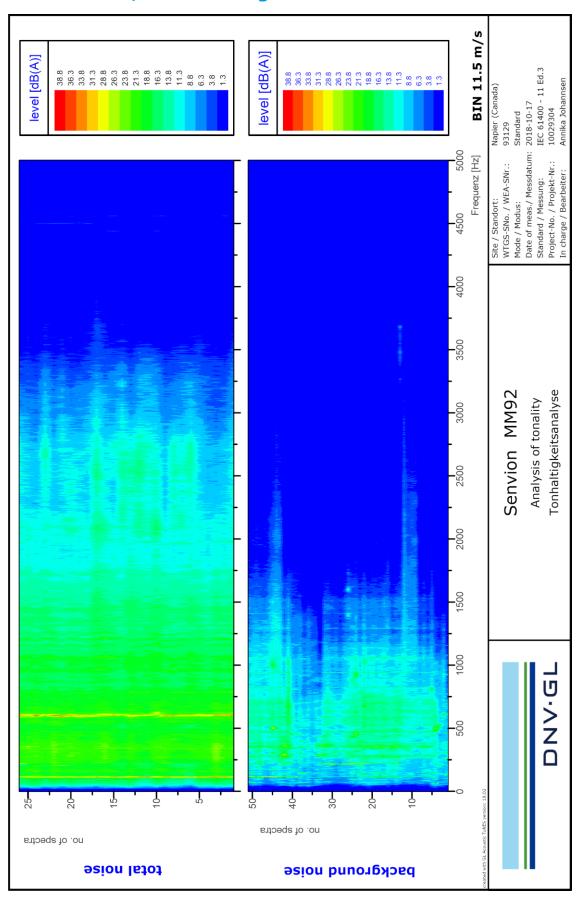

10.44 Frequency spectra of total and background noise at a WS of 8.0 m/s at hub height

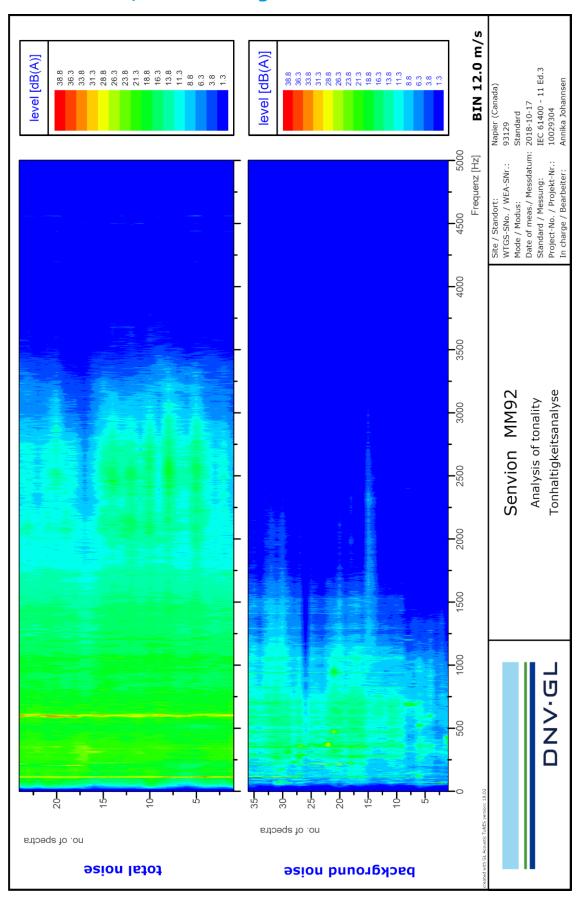

10.45 Frequency spectra of total and background noise at a WS of 8.5 m/s at hub height

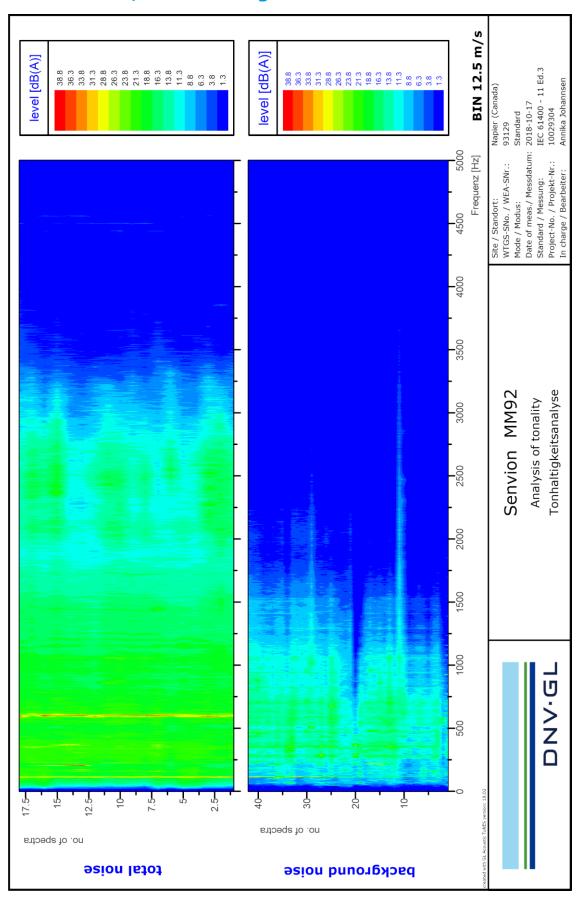

10.46 Frequency spectra of total and background noise at a WS of 9.0 m/s at hub height

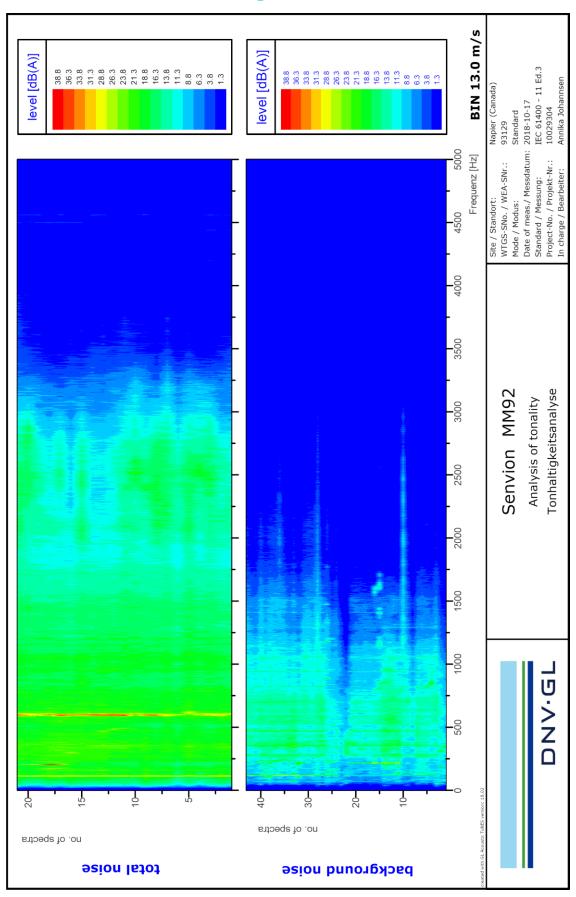

10.47 Frequency spectra of total and background noise at a WS of 9.5 m/s at hub height

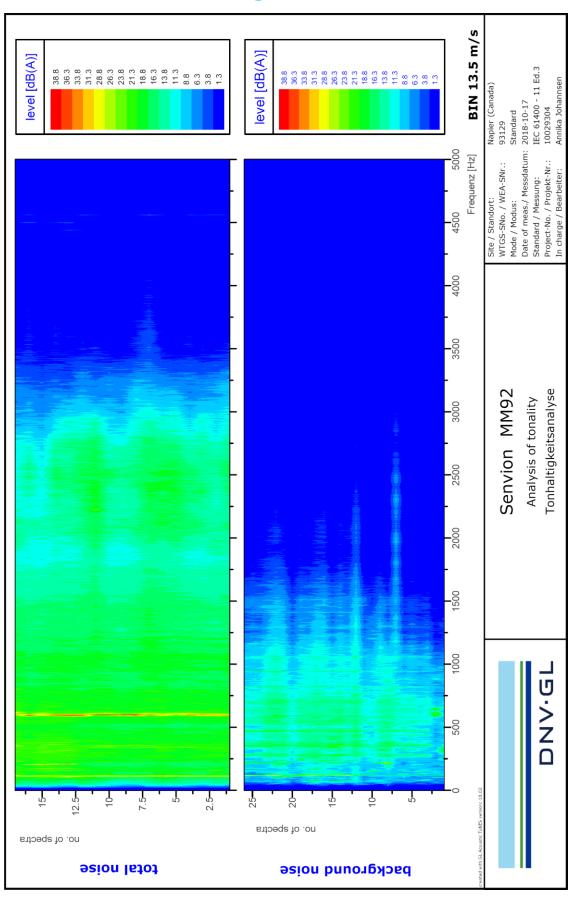

10.48 Frequency spectra of total and background noise at a WS of 10.0 m/s at hub height


10.49 Frequency spectra of total and background noise at a WS of 10.5 m/s at hub height


10.50 Frequency spectra of total and background noise at a WS of 11.0 m/s at hub height


10.51 Frequency spectra of total and background noise at a WS of 11.5 m/s at hub height


10.52 Frequency spectra of total and background noise at a WS of 12.0 m/s at hub height


10.53 Frequency spectra of total and background noise at a WS of 12.5 m/s at hub height

10.54 Frequency spectra of total and background noise at a WS of 13.0 m/s at hub height

10.55 Frequency spectra of total and background noise at a WS of 13.5 m/s at hub height

10.56 Power curve used for the analysis

Leistungskennlinie & Schallleistungspegel MM92 [2050kW/50Hz] Elektrische Leistungskurve und Schallleistungspegel

3 Elektrische Leistungskurve und Schallleistungspegel

3.1 Elektrische Leistungskurve

Werte bei einer Luftdichte von 1,225 kg/m³

Windgeschwindigkeit v [m/s]	Elektrische Leistung P [kW]	Schubbeiwert c _s [-]	Leistungsbeiwert c _P [-]
3,0	20	0,98	0,180
4,0	94	0,87	0,357
5,0	205	0,79	0,398
6,0	391	0,79	0,440
7,0	645	0,79	0,457
8,0	979	0,79	0,465
9,0	1375	0,74	0,458
10,0	1795	0,69	0,436
11,0	2000	0,54	0,365
12,0	2040	0,39	0,287
13,0	2050	0,29	0,227
14,0	2050	0,23	0,182
15,0	2050	0,19	0,148
16,0	2050	0,15	0,122
17,0	2050	0,13	0,101
18,0	2050	0,11	0,085
19,0	2050	0,09	0,073
20,0	2050	0,08	0,062
21,0	2050	0,07	0,054
22,0	2050	0,06	0,047
23,0	2050	0,06	0,041
24,0	2050	0,05	0,036

Die elektrische Leistung gilt bei reiner Wirkleistungsvorgabe.

Diese Leistungskurve gilt für die Niederspannungsseite des Transformators.

Seite 8 / 10

-ISO 16016 Schutzvermerk beachten-

SD-2.9-WT.PC.03-B-H

10.57 Extract from REA 8388-9B7N4J; Schedule B

SCHEDULE A

Facility Description

The Facility shall consist of the construction, installation, operation, use and retiring of the following:

- (a) a total of two (2) REpower MM92 wind turbine generators each rated at a maximum of 2.05 megawatts (MW) generating output capacity with a maximum total name plate capacity of 4.1 megawatts (MW), each with a hub height of 100 metres above grade, and sited at the locations shown in SCHEDULE B; and
- (b) associated ancillary equipment, systems and technologies, on-site access roads, underground cabling and overhead distribution lines,

all in accordance with the Application.

SCHEDULE B
Table B1: Coordinates of the Equipment and Noise Specifications

Coordinates of the Equipment below in UTM, Z17-NAD83 projection

Source ID	Maximum Sound Power Level (dBA)	Easting (metres)	Northing (metres)	Source Description
WTG1	104.2	440,074	4,756,817	Wind Turbine REpower MM92 2.05 MW, 100 metres hub height
WTG2	104.2	441,437	4,756,769	Wind Turbine REpower MM92 2.05 MW, 100 metres hub height

Page 16 - NUMBER 8388-9B7N4J

10.58 Manufacturer's certificate

Herstellerbescheinigung, Kurzfassung für akustische Nachmessungen Manufacturer's certificate, short version for control measurements of acoustic noise

1. Allgemeine Informationen – General information	
Anlagenhersteller – turbine manufacturer:	Senvion GmbH
Spezifische Anlagenbezeichnung – specific turbine type name:	MM92 CCV
Seriennummer der vermessenden WEA – serial number of tested WT:	93129
Standort der vermessenden WEA – location of tested WT:	Napier
Koordinaten des Standortes – coordinates of turbine location:	-81.734766 / 42.9616140
	orizontal 🛛 vertikal – vertical 🗌
Nennleistung – rated power:	2050 kW
Leistungsregelung – power control:	pitch ⊠ stall □
Nabenhöhe über Grund – hub height above ground:	100 m
Nabenhöhe über Fundamentflansch – hub height above top of foundation flange:	98 m
Nennwindgeschwindigkeit – rated wind speed:	12,5 m/s
Ein- / Abschaltwindgeschwindigkeit - cut-in / cut-out wind speed:	3,0 m/s - 24,0 m/s
2. Rotor - Rotor	
Durchmesser rotor diameter:	92,5 m
Anzahl der Blätter – number of blades:	3
	– teetered ☐ starr – rigid 🗵
Anordnung zum Turm – position relative to tower:	Luvseitig / upwind
Drehzahlbereich/Drehzahlstufen – rotor speed range/stages of rotor speed:	7,5 – 15,0 rpm
Rotorblatteinstellwinkel – rotor blade pitch setting:	variabel (0 – 91°)
Konuswinkel – cone angel:	3,5°
Achsneigung – tilt angle:	5°
Horizontaler Abstand zwischen Rotormittelpunkt und Turmmittellinie -	3150 mm
horizontal distance between centre of rotor and tower centre line:	0100 77
3. Rotorblatt – Rotor blade	\$7477;3556-86;553;55524556;5356556164-6
5 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	D Bl1
Hersteller manufacturer:	Power Blades
Typenbezeichnung – type:	RE45.2
Seriennummer der Rotorblätter – serial number of rotor blades:	0026 - 0028 - 0029
Zusatzkomponenten (z.B. strips, Vortex-Gen., Turbulatoren) – additional components (e.g.	Serrations
stall strips, vortex gen., trip strips):	apioni i i retricingente PUNCTE STATE
4. Getriebe – Gearbox	
Hersteller – manufacturer:	ZF Hansen
Typenbezeichnung – type:	EH854A-012L
Seriennummer des Getriebes – serial number of gear box:	LM0313
Ausführung – design:	Planeten-/Stirnradgetriebe
	Planetary/spur gearbox
Übersetzungsverhältnis – gear ratio:	1:96
5. Generator – Generator	
Hersteller – manufacturer:	Siemens
Typenbezeichnung – type:	JFRA-560SR-06A
Seriennummer des Generators – serial number of generator:	6014631
Anzahl der Generatoren – number of generators:	1
Art des Generators (z.B. synchron, asynchr.) - kind of generator (e.g. synchronous,	doppeltgespeist, asynchrony
asynchr.):	Asynchronous double - fed
Nennleistung(en) rated power values(s):	2100 kW
Drehzahlbereich/Drehzahlstufen – rotor speed range/stages of rotor speed:	720 – 1400 rpm
6. Turm – Tower	
Ausführung – design:	konisch – conical
Material – material:	Stahl
Durchmesser Turmfuß – foot of the tower diameter	4.3 m
	7,5 iii
7. Betriebsführung / Regelung – Control system	<u> </u>
Art der Leistungsregelung – kind of power control:	Pitch
Antrieb der Leistungsregelung – actuation of power control:	Elektrisch
Hersteller der Betriebsführung / Regelung – manufacturer of control system:	Bachmann
Typenbezeichnung der Betriebsführung / Regelung – control system type:	MPC 293
Bezeichnung der verwendeten Steuerungskurve – designation of used control setup:	Standard
Bezeichnung / Messbericht der verwendeten Leistungskurve – designation of power curve	Standard
report:	-3-12-11
77	-Oct-2018 M

Datum, Stempel und Unterschriff des Herstellers

Der Hersteller der Windenergieanlage bestätigt, dass die WEA, deren Schallemission, Leistungskurve und elektrische Eigenschaften in den Prüffberichten abgebildet sind, die o.g. Eigenschaften aufweist. – The manufacturer of the wind turbine (WT) confirms that the WT whose noise level, performance curve and power quality is measured and depicted in the test reports, shows the characteristics given above.

1600 Stout St. #2000 Denver, CO 80202

10.59 Measuring equipment

Beschreibung description	Fabrikat supplier	Typ Type	WT Nr./Ser.Nr. WT stock number/ serial number	letzte Kalibrierung last calibration	nächste Kalibrierung next calibration
Schallpegelmesser sound level meter	Svantek	979	59702	Jun. 17	Jun. 19
Mikrofon microphone	G.R.A.S.	40AE	242494		
Vorverstärker preamp.	Svantek	SV17	57849	gemeinsame Kalibration common calibration	gemeinsame Kalibration common calibration
Mikrofonkabel microphone cable	Svantek	SC93/10	-		
Akustischer Kalibrator acoustic calibrator	CAL	200	5593	Mrz. 18	Mrz. 19
Primärwindschirm primary wind shield	Brüel & Kjær	UA 0237	-		
Sekundärwindschirm secondary wind shield	DNVGL	EWS 15-22	GLGH-428618-336000070		
Anemometer	Thies Clima	4.9200.00.000	GLGH 428616-113000306	Nov. 16	Nov. 18
anemometer Windrichtungsgeber	Thies Clima	4.9200.00.000	(10160038) GLGH 428616-113000306	Nov. 16	Nov. 18
wind direction sensor Temperaturgeber temperature sensors	Thies Clima	4.9200.00.000	(10160038) GLGH 428616-113000306 (10160038)		
Luftdruckgeber pressure sensors	Thies Clima	4.9200.00.000	GLGH 428616-113000306 (10160038)		
Feuchtesensor humidity sensor	Thies Clima	4.9200.00.000	GLGH 428616-113000306 (10160038)		
Niederschlagssensor rain sensor	Thies Clima	4.9200.00.000	GLGH 428616-113000306 (10160038)		
WEA Box	Expert	EX9017/F	GLGH-428616-323000015 (66024)	Nov. 16	Nov. 18
Laser- Entfernungsmesser laser distance meter	Lasertech	TruePulse 200	-		
Erfassungsrechner data acquisition computer	Lenovo	X230	-		
Erfassungs- und Auswertesoftware data acquisition and analytical software	GfS Aachen Microsoft DATALOG GmbH	DIAdem 18.0 Office 365 ProPlus Dasy-Lab 16.0			

10.60 Calibration certificate of noise level meter (page 1)

e-mail: service@sensidyne.com

Tel.: +727-530-3602 ext. 781

www.sensidyne.com

1000 112th Circle North Suite 100 Saint Petersburg, FL 33716 **USA**

CALIBRATION CERTIFICATE

Date of issue: March 4, 2019 Certificate No: 260617-1 Page: 1/5

OBJECT OF CALIBRATION

Sound level meter type SVAN 979, number 59702, manufacturer SVANTEK with preamplifier type SV17, number 57849, manufacturer SVANTEK and

microphone type 40AE, number 242494, manufacturer G.R.A.S.

APPLICANT

DNV KEMA Renewables, Inc.

1501 4th Avenue Suite 900 Seattle, WA 98101

CALIBRATION METHOD

Method described in instruction WI0102 "Calibration of Sound Level Meters", rev -, dated 09/03/15, written on the basis of international standard EN IEC 61672-

3:2006 Electroacoustics. Part 3: Periodic tests.

ENVIRONMENTAL CONDITIONS

Temperature: (24.3 ÷ 24.6) °C

Ambient pressure: (1018.6 ÷ 1018.7) kPa

Relative humidity: (54 ÷ 56) %

DATE OF CALIBRATION

26-06-2017

TRACEABILITY

Calibration results were referred to primary standard of sound pressure maintained in the Central Office of Measures with the application of the working standard – sound calibrator type SV 30A, No 48714, manufactured by

SVANTEK.

CALIBRATION RESULTS

The results are presented on pages 2 ÷ 5 of this certificate including

measurement uncertainty.

UNCERTAINTY OF MEASUREMENTS

Uncertainty of measurement has been evaluated in compliance with EA-4/02:2013. The expanded uncertainty assigned corresponds to a coverage

probability of 95 % and the coverage factor k = 2.

CONFORMITY WITH REQUIREMENTS

On the basis of the calibration results, it has been found that sound level meter meets metrological requirements specified in the standard IEC 61672-1:2002

 ${\bf Electroacoustics-Sound\ level\ meters.\ Part\ 1:\ Specifications,\ for\ class\ 1.}$

The certificate may be presented or copied as a whole document only.

10.61 Calibration certificate of noise level meter (page 2)

CALIBRATION CERTIFICATE issued by ACCREDITED LABORATORY #3943.01

Date of issue: March 4, 2019Certificate No: 260617-1Page: 2/5

CALIBRATION RESULTS

Calibration results are the following:

1. Indication at the calibration check frequency

The sound level meter was calibrated in compliance with the instruction manual. During this process, the indication of this SLM was adjusted to the sound pressure level of the sound level calibrator type SV 30A, No 48714, from SVANTEK. The sound pressure level was corrected by the free-field factor.

Deviation of the acoustic pressure measurement of the A-weighted sound level using the sound calibrator type SV 30A, No 48714, from SVANTEK, was made according to the standard reference conditions: for static pressure 101.325 kPa, for temperature 23 °C and for relative humidity 50 %, results:

(0.0 \pm 0.2) dB

The deviation was determined as a difference between the measured sound level and the sound level corrected by the free-field factor appropriate to mentioned sound calibrator.

2. Self-generated noise with microphone installed

Frequency weighting	Α
The highest level of self-generated noise stated in the instruction manual [dB]	12.0
Indication [dB]	26.4

3. Self-generated noise with microphone replaced by the electrical input signal device

Frequency weighting	Α	С	Z
The highest expected level of self-generated noise stated in the instruction manual [dB]	11.0	10.0	16.0
Level of self-generated noise [dB]	7.4	6.8	11.1

10.62 Calibration certificate of noise level meter (page 3)

CALIBRATION CERTIFICATE issued by ACCREDITED LABORATORY #3943.01

Date of issue: March 4, 2019Certificate No: 260617-1Page: 3/5

4. Acoustical signal tests of a frequency weighting C

Frequency	Relative frequency- weighted free-field response	Design-goal frequency weighting	The deviation of frequency weighting	Extended uncertainty	Acceptable limits
Hz	dB	dB	dB	dB	dB
125.0	-0.6	-0,2	-0.4	0.3	±1.5
1000.0	0.0	0,0	0.0	0.3	±1.1
4000.0	-1.0	-0,8	-0.2	0.4	±1.6
8000.0	-2.6	-3,0	0.4	0.4	-3.1; +2.5

5. Electrical signal tests of frequency weightings

Frequency	Design-goal frequency weighting			The deviation of frequency weighting			Extended uncertainty	Acceptable limits
	А	С	Z	А	С	Z	,	
Hz	dB	dB	dB	dB	dB	dB	dB	dB
63	-26,2	-0,8	0,0	0.1	0.1	0.1	0,3	±1,5
125	-16,1	-0,2	0,0	0.1	0.1	0.1	0,3	±1,5
250	-8,6	0,0	0,0	-0.1	-0.1	-0.1	0,3	±1,4
500	-3,2	0,0	0,0	-0.1	0.0	0.0	0,3	±1,4
1000	0,0	0,0	0,0	0.4	0.4	0.4	0,3	±1,1
2000	1,2	-0,2	0,0	0.4	0.4	0.4	0,3	±1,6
4000	1,0	-0,8	0,0	-0.2	-0.2	-0.2	0,3	±1,6
8000	-1,1	-3,0	0,0	0.3	0.3	0.1	0,4	-3,1; +2,5
16000	-6,6	-8,5	0,0	-0.6	-0.6	-0.4	0,6	-17,0; +3,5

6. Frequency and time weightings at 1 kHz

		Sound level Time-average sound level							
Frequency weighting	Α	Α	С	Z	А				
Time weighting	Fast	Slow	Fast	Fast	-				
Indication [dB]	94.0	94.0	94.0	94.0	94.0				
The deviation of indication from the indication of A-weighted sound level with Fast time weighting [dB]		0.0	0.0	0.0	0.0				
Extended uncertainty [dB]	><	0.1							
Acceptable limits [dB]	\geq	±0.3	±0.4	±0.4	±0.3				

10.63 Calibration certificate of noise level meter (page 4)

CALIBRATION CERTIFICATE issued by ACCREDITED LABORATORY #3943.01

Date of issue: March 4, 2019Certificate No: 260617-1Page: 4/5

7. Level linearity on the reference level range

Range: "HIGH"

Expected sound level	Indication	Level linearity error	Extended uncertainty	Acceptable limits
dB	dB	dB	dB	dB
136.0	136.0	0.0		
135.0	135.0	0.0		
134.0	134.0	-0.1		
133.0	133.0	-0.1		
132.0	132.0	-0.1		
131.0	131.0	-0.1		
130.0	130.0	-0.1		
129.0	128.9	-0.1		
124.0	123.9	-0.1		
119.0	118.9	-0.1		
114.0	114.0	0.0		
109.0	109.0	0.0		
104.0	104.0	0.0		
99.0	99.0	0.0		
94.0	93.9	-0.1		
89.0	88.9	-0.1		
84.0	83.9	-0.1		
79.0	79.0	0.0	0.2	±1.1
74.0	74.0	0.0		
69.0	69.0	0.0		
64.0	63.9	-0.1		
59.0	58.9	-0.1		
54.0	54.0	0.0		
49.0	49.0	0.0		
44.0	44.0	0.0		
39.0	39.0	0.0		
38.0	38.0	0.0		
37.0	37.0	0.0		
36.0	36.0	0.0		
35.0	35.0	0.0		
34.0	34.0	0.0		
33.0	33.0	0.0		
32.0	32.1	0.1		
31.0	31.1	0.1		
30.0	30.2	0.2		

10.64 Calibration certificate of noise level meter (page 5)

CALIBRATION CERTIFICATE issued by ACCREDITED LABORATORY #3943.01

 Date of issue: March 4, 2019
 Certificate No: 260617-1
 Page: 5/5

8. Level linearity including the level range control

Level range	HIGH	LOW
Indication for the reference sound pressure level [dB]	94.0	94.0
The deviation of indication [dB]	\rightarrow	0.0
Anticipated level that is 5 dB less than the upper limit specified in the instruction manual for level range at 1 kHz [dB]	132.0	115.0
Indication [dB]	132.0	115.0
The deviation of indication [dB]	0.0	0.0
Extended uncertainty [dB]	0	.2
Acceptable limits [dB]	±1	1.1

9. Toneburst response

Measurement quantity	Time weightin g	Toneburst duration	The indications in response to toneburst relative to the steady sound level	Reference toneburst response relative to the steady sound level	The deviations of the measured toneburst in responses from the corresponding reference toneburst	Extended uncertainty	Acceptable limits
		ms	dB	dB	dB	dB	dB
Time-		200	-1.0	-1.0	0.0		±0.8
weighted	Fast	2	-18.0	-18.0	0.0		-1.8; +1.3
sound level		0.25	-27.1	-27.0	-0.1		-3.3; +1.3
Time- weighted	Slow	200	-7.4	-7.4	0.0	0.2	±0.8
sound level	0.011	2	-27.0	-27.0	0.0	0.2	-1.8; +1.3
Sound		200	-7.0	-7.0	0.0		±0.8
exposure	-	2	-27.0	-27.0	0.0		-1.8; +1.3
level		0.25	-36.1	-36.0	-0.1		-3.3; +1.3

10.Peak C sound level

Numbers of cycles in test signal	Frequency of test signal	The deviation of indication	Extended uncertainty	Acceptable limits
iii test signai	Hz	dB	dB	dB
One	8000	-0.7		±2.4
Positive half-cycle	500	-0.1	0.2	±1.4
Negative half-cycle	500	-0.1		±1.4

11.Overload indication

Frequency weighting A

The difference between the levels of the positive and negative one-half-cycles input signals that first cause the displays of overload indication [dB]	Extended uncertainty [dB]	Maximum value of the difference [dB]
dB	dB	dB
0.1	0.3	1.8

10.65 Calibration certificate of calibrator (page 1)

Calibration Certificate

Certificate Number 2018002853

Customer:

GL Garrad Hassan Canada 4100 Rue Molson Suite 100 Montreal, QC H1Y 2X4, Canada

Model Number CAL200
Serial Number 5593
Test Results Pass
Initial Condition Adjusted

Description Larson Davis CAL200 Acoustic Calibrator

Procedure Number Technician

 Calibration Date
 21 Mar 2018

 Calibration Due
 21 Mar 2019

 Temperature
 22 °C

 Temperature
 22
 °C
 ± 0.3 °C

 Humidity
 41
 %RH
 ± 3 %RH

 Static Pressure
 101.3
 kPa
 ± 1 kPa

D0001.8386

Scott Montgomery

Evaluation Method

The data is aquired by the insert voltage calibration method using the reference microphone's open

circuit sensitivity. Data reported in dB re 20 µPa.

Compliance Standards

Compliant to Manufacturer Specifications per D0001.8190 and the following standards:

IEC 60942:2017

ANSI \$1.40-2006

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

	Standards Used			
Description	Cal Date	Cal Due	Cal Standard	
Agilent 34401A DMM	09/06/2017	09/06/2018	001021	
Larson Davis Model 2900 Real Time Analyzer	04/10/2017	04/10/2018	001051	
Microphone Calibration System	03/07/2018	03/07/2019	005446	
1/2" Preamplifier	10/05/2017	10/05/2018	006506	
Larson Davis 1/2" Preamplifier 7-pin LEMO	08/08/2017	08/08/2018	006507	
1/2 inch Microphone - RI - 200V	04/24/2017	04/24/2018	006510	
Pressure Transducer	06/01/2017	06/01/2018	007310	

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

3/21/2018 3:15:05PM

Page 1 of 3

D0001,8410 Rev A

10.66 Calibration certificate of calibrator (page 2)

Certificate Number 2018002853

Output Level

Nominal Level [dB]	Pressure [kPa]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
114	101.2	114.00	113.80	114.20	0.13	Pass
94	101.3	94.01	93.80	94.20	0.14	Pass

Frequency

Nominal Level [dB]	Pressure [kPa]	Test Result [Hz]	Lower limit [Hz]	Upper limit [Hz]	Expanded Uncertainty [Hz]	Result
94	101.3	1,000.27	990.00	1,010.00	0.20	Pass
114	101.2	1,000.26	990.00	1,010.00	0.20	Pass

Total Harmonic Distortion + Noise (THD+N)

Nominal Level	Pressure	Test Result	Lower limit	Upper limit	Expanded Uncertainty	D 4
[dB]	[kPa]	[%]	[%]	[%]	[%]	Result
94	101.3	0.39	0.00	2.00	0.25	Pass
114	101.2	0.35	0.00	2.00	0.25	Pass

Level Change Over Pressure

Tested at: 114 dB, 23 °C, 39 %RH

Pressure	Test Result	Lower limit	Upper limit	Expanded Uncertainty	Result
101.3	0.00	-0.30	0.30	0.04 ‡	Pass
92.0	0.00	-0.30	0.30	0.04 ‡	Pass
108.0	-0.02	-0.30	0.30	0.04 ‡	Pass
83.0	-0.02	-0.30	0.30	0.04 ‡	Pass
74.1	-0.07	-0.30	0.30	0.04 ‡	Pass
65.0	-0.18	-0.30	0.30	0.04 ±	Pass
	[kPa] 101.3 92.0 108.0 83.0 74.1	[kPa] [dB] 101.3 0.00 92.0 0.00 108.0 -0.02 83.0 -0.02 74.1 -0.07	[kPa] [dB] [dB] 101.3 0.00 -0.30 92.0 0.00 -0.30 108.0 -0.02 -0.30 83.0 -0.02 -0.30 74.1 -0.07 -0.30	[kPa] [dB] [dB] [dB] 101.3 0.00 -0.30 0.30 92.0 0.00 -0.30 0.30 108.0 -0.02 -0.30 0.30 83.0 -0.02 -0.30 0.30 74.1 -0.07 -0.30 0.30	[kPa] [dB] [dB] [dB] [dB] 101.3 0.00 -0.30 0.30 0.04 ‡ 92.0 0.00 -0.30 0.30 0.04 ‡ 108.0 -0.02 -0.30 0.30 0.04 ‡ 83.0 -0.02 -0.30 0.30 0.04 ‡ 74.1 -0.07 -0.30 0.30 0.04 ‡

Frequency Change Over Pressure

Tested at: 114 dB, 23 °C, 39 %RH

Pressure	Test Result	Lower limit	Upper limit	Expanded Uncertainty	Result
[kPa]	[Hz]	[Hz]	[Hz]	[Hz]	Result
108.0	0.00	-10.00	10.00	0.20 ‡	Pass
101.3	0.00	-10.00	10.00	0.20 ‡	Pass
92.0	0.00	-10.00	10.00	0.20 ‡	Pass
83.0	0.00	-10.00	10.00	0.20 ‡	Pass
74.1	-0.01	-10.00	10.00	0.20 ‡	Pass
65.0	-0.01	-10.00	10.00	0.20 ‡	Pass
	108.0 101.3 92.0 83.0 74.1	108.0 0.00 101.3 0.00 92.0 0.00 83.0 0.00 74.1 -0.01	108.0 0.00 -10.00 101.3 0.00 -10.00 92.0 0.00 -10.00 83.0 0.00 -10.00 74.1 -0.01 -10.00	[kPa] [Hz] [Hz] [Hz] 108.0 0.00 -10.00 10.00 101.3 0.00 -10.00 10.00 92.0 0.00 -10.00 10.00 83.0 0.00 -10.00 10.00 74.1 -0.01 -10.00 10.00	[kPa] [Hz] [Hz] [Hz] [Hz] [Hz] 108.0 0.00 -10.00 10.00 0.20 ‡ 101.3 0.00 -10.00 10.00 0.20 ‡ 92.0 0.00 -10.00 10.00 0.20 ‡ 83.0 0.00 -10.00 10.00 0.20 ‡ 74.1 -0.01 -10.00 10.00 0.20 ‡

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

IDC MRA
ACCREDITE
Cert #3622.01

3/21/2018 3:15:05PM

Page 2 of 3

D0001.8410 Rev A

10.67 Calibration certificate of calibrator (page 3)

Certificate Number 2018002853 Total Harmonic Distortion + Noise (THD+N) Over Pressure

Tested at: 114 dB, 23 °C, 39 %RH

Nominal Pressure	Pressure	Test Result	Lower limit	Upper limit	Expanded Uncertainty	
[kPa]	[kPa]	[%]	[%]	[%]	[%]	Result
108.0	108.0	0.38	0.00	2.00	0.25 ‡	Pass
101.3	101.3	0.36	0.00	2.00	0.25 ‡	Pass
92.0	92.0	0.34	0.00	2.00	0.25 ‡	Pass
B3.0	83.0	0.31	0.00	2.00	0.25 ‡	Pass
74.0	74.1	0.29	0.00	2.00	0.25 ‡	Pass
35.0	65.0	0.28	0.00	2.00	0.25 ±	Pass

-- End of measurement results--

Signatory: Scott Montgomery

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

3/21/2018 3:15:05PM

Page 3 of 3

D0001.8410 Rev A

10.68 Calibration certificate of anemometer (page 1)

Deutsche WindGuard Wind Tunnel Services GmbH, Varel

accredited by the / akkreditiert durch die

Deutsche Akkreditierungsstelle GmbH

as calibration laboratory in the / als Kalibrierlaboratorium im

Deutschen Kalibrierdienst

DAkkS Akkreditierungsstelle D-K-15140-01-00

Calibration certificate Kalibrierschein

Calibration mark Kalibrierzeichen

1624105 D-K-15140-01-00 11/2016

Object 2D Sonic Anemometer

Manufacturer Thies Clima D-37083 Göttingen

4.9201.00.000 Type Typ

10160038 Serial number

GLGH4286 113000306

GL Garrad Hassan Customer Auftraggeber

D-25709 Kaiser-Wilhelm-Koog

18295 Order No.

Project No. VT160980

Number of pages

Date of Calibration 07.11.2016 This calibration certificate documents the traceability to national standards, which realize the units of measurement according to the International System of Units (SI).

The DAkkS is signatory to the multilateral agreements of the European co-operation for Accreditation (EA) and of the International Laboratory Accreditation Cooperation (ILAC) for the mutual recognition of calibration certificates. The user is obliged to have the object recalibrated at appropriate intervals.

Dieser Kalibrierschein dokumentiert die Rückführung auf nationale Normale zur Darstellung der Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI).

Die DAkkS ist Unterzeichner der multilateralen Übereinkommen der European co-operation for Accreditation (EA) und der International Laboratory Accreditation Cooperation (ILAC) zur gegenseitigen Anerkennung der Kalibrierscheine. Für die Einhaltung einer angemessenen Frist zur Wiederholung der Kalibrierung ist der Benutzer verantwortlich.

This calibration certificate may not be reproduced other than in full except with the permission of both the German Accreditation Body and the issuing laboratory. Calibration certificates without signature are not valid. This calibration certificate has been generated electronically.

Dieser Kalibrierschein darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen der Genehmigung sowohl der Deutschen Akkreditierungsstelle als auch des ausstellenden Kalibrierlaboratoriums. Kalibrierscheine ohne Unterschrift haben keine Gültigkeit. Dieser Kalibrierschein wurde elektronisch erzeugt.

Date Datum

Head of the calibration laboratory

07.11.2016

Person in charge

Dipl.-Ing. (FH) Catharina Herold

10.69 Calibration certificate of anemometer (page 2)

Page 2 / 5 Seite 1624105 р-к-15140-01-00 11/2016

Calibration object

tion object 2D Sonic Anemometer

Calibration procedure

- Deutsche WindGuard Wind Tunnel Services: QM-KL-AK-VA Based on following standards:
- MEASNET: Anemometer calibration procedure
- IEC 61400-12-1: Power performance measurements of electricity producing wind turbines
- IEC 61400-12-2: Power performance of electricity producing wind turbines based on nacelle anemometry
- ISO 3966: Measurement of fluid in closed conduits
- ISO 16622: Meteorology Sonic anemometers/thermometers

Place of calibration
Ort der Kalibrierung

Windtunnel of Deutsche WindGuard WindTunnel Services GmbH, Varel

Test conditions

wind tunnel area 10000 cm²
anemometer frontal area 340 cm²
diameter of mounting pipe 48 mm
blockage ratio 1) 0.034 [-]
software version 7.64

Ambient conditions

air temperature $19.7 \,^{\circ}\text{C} \pm 0.1 \,^{\circ}\text{C}$

air pressure $1009.8 \text{ hPa} \pm 0.3 \text{ hPa}$

relative air humidity $49.9\% \pm 2.0\%$

Measurement uncertainty Messunsicherheit The expanded uncertainty assigned to the measurement results is obtained by multiplying the standard uncertainty by the coverage factor k=2. It has been determined in accordance with DAkkS-DKD-3. The value of the measurand lies

within the assigned range of values with a probability of 95%.

The reference flow speed measurement is traceable to the German NMI (Physikalisch-Technische Bundesanstalt) standard for flow speed. It is realized by using a PTB owned and calibrated Laser Doppler Anemometer (Standard

Uncertainty 0.2 %, k=2)

Additional remarks
Zusätzliche Anmerkungen

Orientation: 0°

 $^{^{1)}}$ Due to the special construction of the test section no blockage correction is necessary.

10.70 Calibration certificate of anemometer (page 3)

Page 3 / 5 Seite

1624105 D-K-15140-01-00 11/2016

Calibration result Kalibrierergebnis

Sensor speed	Sensor dir	Tunnel speed	Uncertainty (k=2)
m/s	deg	m/s	m/s
4.011	0.150	3.982	0.050
6.047	0.007	5.984	0.050
7.917	360.000	7.856	0.050
9.911	360.000	9.838	0.050
12.001	360.000	11.918	0.050
14.045	360.000	13.921	0.050
15.951	360.000	15.813	0.050
15.035	360.000	14.901	0.050
12.981	360.000	12.891	0.050
10.972	360.000	10.891	0.050
8.906	0.015	8.847	0.050
6.985	360.000	6.946	0.050
4.960	0.026	4.942	0.050

File: 1624105

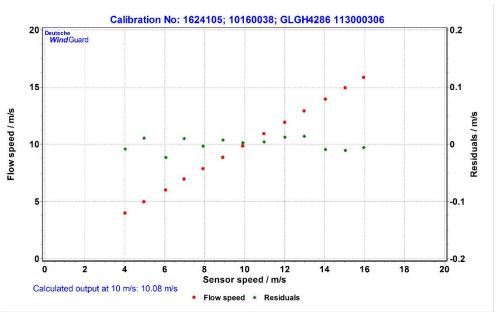
Statistical analysis Slope 0.99068 (m/s)/(m/s) ±0.00087 (m/s)/(m/s)

> Offset 0.0167 m/s ±0.009 m/s

Standard error (Y) 0.013 m/s 0.999996 Correlation coefficient

The calibrated sensor complies with the Remarks

demanded linearity of MEASNET



10.71 Calibration certificate of anemometer (page 4)

Page 4 / 5 Seite

1624105 D-K-15140-01-00 11/2016

Graphical representation of the result *Grafische Darstellung des Ergebnisses*

Photo of the measurement setup Foto des Messaufbaus

Remark: The proportions of the set-up may not be true to scale due to imaging geometry.

10.72 Calibration certificate of anemometer (page 5)

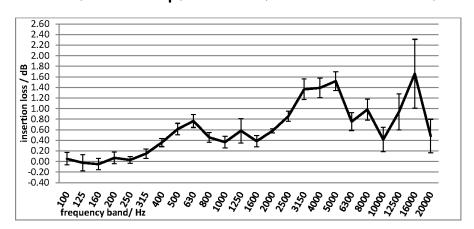
Page 5 / 5 Seite 1624105 D-к-15140-01-00 11/2016

Sensor config during calibration Sensorkonfiguration während der Kalibrierung

!00SS00000 00AB80106 00AH00100 00AL00120 00AM00001 00AO00001 00AP00100 00AQ00100 00AR00060 00AT14060 00AV00010 00BO00000 00BP00008 00BR00096 00BT00000 00Cl00000 00DM00001 00DO00001 00DT00001 00EI00000

00ET00030
00HC00010
00HP00010
00HS00001
00HT00001
00ID00000
00II00000
00KY00000
00MC00000
00NC00000
00OL12789

000R01000 000S00000 00PE00016 00PH00260 00PN00002 00PT00010 00PW00060 00RD00005 00RT00000 00SH00000 00SM00000 00SN10160038 00ST00001 00SV00402 00TA920100000 00TT00002 00TZ00000


2000.0000+18.0 40 1009.2 07.11.16 17:08:28 *362

10.73 Extract of Calibration certificate of secondary wind screen

DNV-GL

Extract of the test report GLGH 4286 11 07555 000-C-0078-A

(Page 7) Figure 2: insertion loss of the secondary windscreen EWS-16-22 with optional weatherproof cover (mean and standard deviation of 12 individual measurements)

frequency	incl. weather protection		
Hz	mean	SD	
100,00	0.05	0.12	
125,00	-0.02	0.15	
160,00	-0.05	0.11	
200,00	0.07	0.11	
250,00	0.03	0.07	
315,00	0.15	0.09	
400,00	0.36	0.08	
500,00	0.61	0.11	
630,00	0.77	0.12	
800,00	0.45	0.09	
1000,00	0.37	0.11	
1250,00	0.58	0.23	
1600,00	0.39	0.11	
2000,00	0.58	0.04	
2500,00	0.86	0.09	
3150,00	1.36	0.19	
4000,00	1.39	0.18	
5000,00	1.52	0.17	
6300,00	0.75	0.17	
8000,00	0.98	0.20	
10000,00	0.41	0.23	
12500,00	0.94	0.34	
16000,00	1.66	0.65	
20000,00	0.48	0.32	

(Page 8) Table 2: insertion loss of the secondary windscreen EWS-16-22 with optional weatherproof cover (mean and standard deviation of 12 individual measurements)

10.74 Position of the test site

Source: Google Earth

10.75 Photos

Photo 1: Photo from microphone and board toward the turbine



Photo 2: Photo from the wind met mast toward the turbine

	_
BOUT DNV GL	
riven by our purpose of safeguarding life, property and the environment, DNV GL enables organization	าร
advance the safety and sustainability of their business. We provide classification and technical	
surance along with software and independent expert advisory services to the maritime, oil and gas,	
nd energy industries. We also provide certification services to customers across a wide range of	
dustries. Operating in more than 100 countries, our professionals are dedicated to helping our	
stomers make the world safer, smarter and greener	